Directional quantum transport in graphyne p-n junction

Graphyne, a newly proposed allotrope of carbon, has a structure which is topologically equivalent to that of a strongly distorted graphene [B. G. Kim and H. J. Choi, Phys. Rev. B 86, 115435 (2012)]. The energy gap between the valence and conduction bands is due to the symmetry breaking caused by the...

Full description

Saved in:
Bibliographic Details
Main Authors: Bumned Soodchomshom, I. Ming Tang, Rassmidara Hoonsawat
Other Authors: Kasetsart University
Format: Article
Published: 2018
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/32772
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:Graphyne, a newly proposed allotrope of carbon, has a structure which is topologically equivalent to that of a strongly distorted graphene [B. G. Kim and H. J. Choi, Phys. Rev. B 86, 115435 (2012)]. The energy gap between the valence and conduction bands is due to the symmetry breaking caused by there being three topologically inequivalent hoping elements. The valleyless fermionic transport properties of γ-graphyne are different from those of graphene since the two valleys are merged together in this carbon allotrope. The transmission and conductance of the electrons in γ-graphyne are found to be directionally dependent. Klein tunneling is predicted if the tunneling is in the y-direction. If the tunneling is in the x-direction, perfect back reflection (anti Klein tunneling) is predicted if the tunneling is at normal incidence. The consequences of these directional transport properties on the performances of p-n junctions fabricated with this carbon allotrope are studied. This work reveals the advantages of building p-n junctions based on γ-gaphyne. © 2013 American Institute of Physics.