Whole-genome sequence-based analysis of thyroid function

© 2015 Macmillan Publishers Limited. All rights reserved. Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K p...

Full description

Saved in:
Bibliographic Details
Main Authors: Peter N. Taylor, Eleonora Porcu, Shelby Chew, Purdey J. Campbell, Michela Traglia, Suzanne J. Brown, Benjamin H. Mullin, Hashem A. Shihab, Josine Min, Klaudia Walter, Yasin Memari, Jie Huang, Michael R. Barnes, John P. Beilby, Pimphen Charoen, Petr Danecek, Frank Dudbridge, Vincenzo Forgetta, Celia Greenwood, Elin Grundberg, Andrew D. Johnson, Jennie Hui, Ee M. Lim, Shane McCarthy, Dawn Muddyman, Vijay Panicker, John R.B. Perry, Jordana T. Bell, Wei Yuan, Caroline Relton, Tom Gaunt, David Schlessinger, Goncalo Abecasis, Francesco Cucca, Gabriela L. Surdulescu, Wolfram Woltersdorf, Eleftheria Zeggini, Hou Feng Zheng, Daniela Toniolo, Colin M. Dayan, Silvia Naitza, John P. Walsh, Tim Spector, George Davey Smith, Richard Durbin, J. Brent Richards, Serena Sanna, Nicole Soranzo, Nicholas J. Timpson, Scott G. Wilson, Saeed Al Turki, Carl Anderson, Richard Anney, Dinu Antony, Maria Soler Artigas, Muhammad Ayub, Senduran Balasubramaniam, Jeffrey C. Barrett, Inês Barroso, Phil Beales, Jamie Bentham, Shoumo Bhattacharya, Ewan Birney, Douglas Blackwood, Martin Bobrow, Elena Bochukova, Patrick Bolton, Rebecca Bounds, Chris Boustred, Gerome Breen, Mattia Calissano, Keren Carss, Krishna Chatterjee, Lu Chen, Antonio Ciampi
Other Authors: Cardiff University
Format: Article
Published: 2018
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/35655
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:© 2015 Macmillan Publishers Limited. All rights reserved. Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N = 2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF ≥ 1%) associated with TSH and FT4 (N = 16,335). For TSH, we identify a novel variant in SYN2 (MAF = 23.5%, P = 6.15 × 10-9) and a new independent variant in PDE8B (MAF = 10.4%, P = 5.94 × 10-14). For FT4, we report a low-frequency variant near B4GALT6/SLC25A52 (MAF=3.2%, P = 1.27 × 10-9) tagging a rare TTR variant (MAF = 0.4%, P=2.14 × 10-11). All common variants explain ≥ 20% of the variance in TSH and FT4. Analysis of rare variants (MAF < 1%) using sequence kernel association testing reveals a novel association with FT4 in NRG1. Our results demonstrate that increased coverage in whole-genome sequence association studies identifies novel variants associated with thyroid function.