Biophysical approach to investigate temperature effects on protein dynamics

© EDP Sciences, 2015. The main purpose of this work is to gain more understanding of the temperature dependence of Min protein dynamics employing spot tracking technique (STT) and biophysical characterization. We observed and confirmed the variation of protein cluster dynamics at evaluated temperatu...

Full description

Saved in:
Bibliographic Details
Main Authors: Yaowapa Saengpayab, Pisan Kanthang, Stefan Schreier, Charin Modchang, Narin Nuttavut, Darapond Triampo, Wannapong Triampo
Other Authors: Mahidol University
Format: Article
Published: 2018
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/36187
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:© EDP Sciences, 2015. The main purpose of this work is to gain more understanding of the temperature dependence of Min protein dynamics employing spot tracking technique (STT) and biophysical characterization. We observed and confirmed the variation of protein cluster dynamics at evaluated temperatures. We found that the time MinD was retained at the cell poles played an important role in this variation. From 25 °C to 37 °C, the MinD protein oscillation period decreased 2.3 times and the anomalous dynamic exponent increased 2.4 times. The time-varied anomalous diffusion coefficient was found to be temperature dependent, which was qualitatively consistent with the prediction by Tsallis statistical mechanics. Furthermore, the average apparent effective potential depth of membrane-bound MinD protein decreased from 10.01 to 3.54 k<inf>B</inf>T. These results showed that the diffusive mode and the MinD protein cluster distribution at the cell poles were altered with temperature and this then affected the whole Min protein dynamics.