Effect of Applying Techniques and Polymer Content on Strength and Drying Shrinkage of Glass Fiber Reinforced Concrete

© The Authors, published by EDP Sciences, 2017. The purposes of this study were to evaluate compressive strength, flexural strength, and drying shrinkage of Glass Fiber Reinforced Concrete (GFRC) applying different techniques and varying polymer content. Two groups of specimens were classified apply...

Full description

Saved in:
Bibliographic Details
Main Authors: Ratthanan Ianleng, Thatchavee Leelawat
Other Authors: Mahidol University
Format: Conference or Workshop Item
Published: 2018
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/42123
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:© The Authors, published by EDP Sciences, 2017. The purposes of this study were to evaluate compressive strength, flexural strength, and drying shrinkage of Glass Fiber Reinforced Concrete (GFRC) applying different techniques and varying polymer content. Two groups of specimens were classified applying the techniques: sprayed and premixed methods. AR-Glass was used with fiber content of 3 to 4% by volume. GFRC was mixed and applied different techniques with proportions of Styrene Butadiene Rubber (SBR) content of 0%, 3%, 6%, and 9% by weight of cement. Compressive and flexural strength tests were performed at 1 and 28 days. Drying shrinkage tests were measured up to 98 days. The results obtained showed that increasing the SBR content showed a lower compressive strength of GFRC for both sprayed and premixed techniques. In the other hand, 28-day flexural strength results of GFRC for both premixed and sprayed techniques were found to increase with increasing SBR content. The GFRC mixes using sprayed technique exhibited flexural strength higher than the corresponding mixes using premixed technique because of the two-dimensional layer of fiber alignment for the sprayed technique. Increasing the SBR content exhibited the lower drying shrinkage of GFRC. At the age of 98 days, the drying shrinkage of GFRC using 9% SBR content was about 40% lower than that of GFRC using 0% SBR content.