A comparison between skeleton and bounding box models for falling direction recognition

© 2017 SPIE. Falling is an injury that can lead to a serious medical condition in every range of the age of people. However, in the case of elderly, the risk of serious injury is much higher. Due to the fact that one way of preventing serious injury is to treat the fallen person as soon as possible,...

Full description

Saved in:
Bibliographic Details
Main Authors: Lalita Narupiyakul, Nitikorn Srisrisawang
Other Authors: Mahidol University
Format: Conference or Workshop Item
Published: 2018
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/42378
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:© 2017 SPIE. Falling is an injury that can lead to a serious medical condition in every range of the age of people. However, in the case of elderly, the risk of serious injury is much higher. Due to the fact that one way of preventing serious injury is to treat the fallen person as soon as possible, several works attempted to implement different algorithms to recognize the fall. Our work compares the performance of two models based on features extraction: (i) Body joint data (Skeleton Data) which are the joint's positions in 3 axes and (ii) Bounding box (Box-size Data) covering all body joints. Machine learning algorithms that were chosen are Decision Tree (DT), Naïve Bayes (NB), K-nearest neighbors (KNN), Linear discriminant analysis (LDA), Voting Classification (VC), and Gradient boosting (GB). The results illustrate that the models trained with Skeleton data are performed far better than those trained with Box-size data (with an average accuracy of 94-81% and 80-75%, respectively). KNN shows the best performance in both Body joint model and Bounding box model. In conclusion, KNN with Body joint model performs the best among the others.