Detecting target text related to algorithmic efficiency in scholarly big data using recurrent convolutional neural network model
© 2017, Springer International Publishing AG. We are observing an exponential growth of scientific literature since the last few decades. Tapping on the advancement of web-enabled tools and technologies, millions of articles are stored and indexed in the digital libraries. Among this archived scient...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Published: |
2018
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/42427 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
Summary: | © 2017, Springer International Publishing AG. We are observing an exponential growth of scientific literature since the last few decades. Tapping on the advancement of web-enabled tools and technologies, millions of articles are stored and indexed in the digital libraries. Among this archived scientific literature, thousands of newly emerging algorithms, mostly illustrated with pseudo-codes, are published every year in the area of Computer Science and other related computational fields. Previously, an array of techniques has been deployed to retrieve information related to these algorithms by indexing their pseudo-codes and metadata from a vast pool of scholarly documents. Unfortunately, existing search engines are only limited to indexing a textual description of each pseudo-code and are unable to provide simple algorithm-specific information such as run-time complexity, performance evaluation (such as precision, recall, or f-measure), and the size of the dataset it can effectively process, etc. In this paper, we propose a set of algorithms that extract information pertaining to the performance of algorithm(s) presented and/or discussed in the research article. Specifically, sentences in the paper that convey information about the efficiency of the corresponding algorithm are identified and extracted, using the Recurrent Convolutional Neural Network (RCNN) model. To evaluate the performance of our algorithm, we have collected a dataset of 258 manually annotated scholarly documents by four experts, originally downloaded from CiteseerX. Our proposed RCNN based model achieves encouraging 77.65% f-measure and 76.35% accuracy. |
---|