Single nucleoprotein residue determines influenza A virus sensitivity to an intertypic suppression mechanism

© 2017 Elsevier Inc. Several mechanisms underlying intertypic interference between co-infecting influenza types A and B viruses (IAV and IBV) have been proposed. We have recently described one in which IBV's nucleoprotein (BNP) sequestered IAV's nucleoprotein (ANP) and suppressed IAV polym...

Full description

Saved in:
Bibliographic Details
Main Authors: Jaraspim Narkpuk, Samaporn Teeravechyan, Pilaipan Puthavathana, Anan Jongkaewwattana, Peera Jaru-Ampornpan
Other Authors: Thailand National Science and Technology Development Agency
Format: Article
Published: 2018
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/42781
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:© 2017 Elsevier Inc. Several mechanisms underlying intertypic interference between co-infecting influenza types A and B viruses (IAV and IBV) have been proposed. We have recently described one in which IBV's nucleoprotein (BNP) sequestered IAV's nucleoprotein (ANP) and suppressed IAV polymerase and growth. However, its anti-IAV capacity and limitations have not been fully explored. Here, we showed that BNP's inhibitory effect was more potent toward a wide array of avian IAVs, whereas human IAVs revealed moderate resistance. BNP sensitivity was largely determined by ANP's residue 343 at the NP oligomerization interface. An avian IAV polymerase carrying an NP-V343L mutation switched from being highly BNP-sensitive to moderately BNP-resistant, and vice versa for a human IAV polymerase carrying a reverse mutation. To highlight its capacity, we demonstrated that the polymerases of highly-pathogenic H5N1 and the pandemic 2009 (H1N1) strains are strongly inhibited by BNP. Our work provides insights into lineage-specific sensitivity to BNP-mediated intertypic interference.