Novel bioreactor platform for scalable cardiomyogenic differentiation from pluripotent stem cell-derived embryoid bodies
© Springer Science+Business Media New York 2016. Generation of cardiomyocytes from pluripotent stem cells (PSCs) is a common and valuable approach to produce large amount of cells for various applications, including assays and models for drug development, cell-based therapies, and tissue engineering...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Chapter |
Published: |
2018
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/43200 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
Summary: | © Springer Science+Business Media New York 2016. Generation of cardiomyocytes from pluripotent stem cells (PSCs) is a common and valuable approach to produce large amount of cells for various applications, including assays and models for drug development, cell-based therapies, and tissue engineering. All these applications would benefit from a reliable bioreactorbased methodology to consistently generate homogenous PSC-derived embryoid bodies (EBs) at a large scale, which can further undergo cardiomyogenic differentiation. The goal of this chapter is to describe a scalable method to consistently generate large amount of homogeneous and synchronized EBs from PSCs. This method utilizes a slow-turning lateral vessel bioreactor to direct the EB formation and their subsequent cardiomyogenic lineage differentiation. |
---|