Molecular assays for antimalarial drug resistance surveillance: A target product profile

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Antimalarial drug resistance is...

Full description

Saved in:
Bibliographic Details
Main Authors: Christian Nsanzabana, Frederic Ariey, Hans Peter Beck, Xavier C. Ding, Edwin Kamau, Sanjeev Krishna, Eric Legrand, Naomi Lucchi, Olivo Miotto, Sidsel Nag, Harald Noedl, Cally Roper, Philip J. Rosenthal, Henk D.F.H. Schallig, Steve M. Taylor, Sarah K. Volkman, Iveth J. Gonzalez
Other Authors: Duke University Medical Center
Format: Article
Published: 2019
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/44690
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Antimalarial drug resistance is a major constraint for malaria control and elimination efforts. Artemisinin-based combination therapy is now the mainstay for malaria treatment. However, delayed parasite clearance following treatment with artemisinin derivatives has now spread in the Greater Mekong Sub region and may emerge or spread to other malaria endemic regions. This spread is of great concern for malaria control programmes, as no alternatives to artemisinin-based combination therapies are expected to be available in the near future. There is a need to strengthen surveillance systems for early detection and response to the antimalarial drug resistance threat. Current surveillance is mainly done through therapeutic efficacy studies; however these studies are complex and both time- and resource-intensive. For multiple common antimalarials, parasite drug resistance has been correlated with specific genetic mutations, and the molecular markers associated with antimalarial drug resistance offer a simple and powerful tool to monitor the emergence and spread of resistant parasites. Different techniques to analyse molecular markers associated with antimalarial drug resistance are available, each with advantages and disadvantages. However, procedures are not adequately harmonized to facilitate comparisons between sites. Here we describe the target product profiles for tests to analyse molecular markers associated with antimalarial drug resistance, discuss how use of current techniques can be standardised, and identify the requirements for an ideal product that would allow malaria endemic countries to provide useful spatial and temporal information on the spread of resistance.