Poster: Predicting components for issue reports using deep learning with information retrieval
© 2018 Authors. Assigning an issue to the correct component(s) is challenging, especially for large-scale projects which have are up to hundreds of components. We propose a prediction model which learns from historical issues reports and recommends the most relevant components for new issues. Our mo...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Published: |
2019
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/45635 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
id |
th-mahidol.45635 |
---|---|
record_format |
dspace |
spelling |
th-mahidol.456352019-08-23T17:57:14Z Poster: Predicting components for issue reports using deep learning with information retrieval Morakot Choetkiertikul Hoa Khanh Dam Truyen Tran Trang Pham Aditya Ghose Deakin University Mahidol University University of Wollongong Computer Science © 2018 Authors. Assigning an issue to the correct component(s) is challenging, especially for large-scale projects which have are up to hundreds of components. We propose a prediction model which learns from historical issues reports and recommends the most relevant components for new issues. Our model uses the deep learning Long Short-Term Memory to automatically learns semantic features representing an issue report, and combines them with the traditional textual similarity features. An extensive evaluation on 142,025 issues from 11 large projects shows our approach outperforms alternative techniques with an average 60% improvement in predictive performance. 2019-08-23T10:57:14Z 2019-08-23T10:57:14Z 2018-05-27 Conference Paper Proceedings - International Conference on Software Engineering. (2018), 244-245 10.1145/3183440.3194952 02705257 2-s2.0-85049674458 https://repository.li.mahidol.ac.th/handle/123456789/45635 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049674458&origin=inward |
institution |
Mahidol University |
building |
Mahidol University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Mahidol University Library |
collection |
Mahidol University Institutional Repository |
topic |
Computer Science |
spellingShingle |
Computer Science Morakot Choetkiertikul Hoa Khanh Dam Truyen Tran Trang Pham Aditya Ghose Poster: Predicting components for issue reports using deep learning with information retrieval |
description |
© 2018 Authors. Assigning an issue to the correct component(s) is challenging, especially for large-scale projects which have are up to hundreds of components. We propose a prediction model which learns from historical issues reports and recommends the most relevant components for new issues. Our model uses the deep learning Long Short-Term Memory to automatically learns semantic features representing an issue report, and combines them with the traditional textual similarity features. An extensive evaluation on 142,025 issues from 11 large projects shows our approach outperforms alternative techniques with an average 60% improvement in predictive performance. |
author2 |
Deakin University |
author_facet |
Deakin University Morakot Choetkiertikul Hoa Khanh Dam Truyen Tran Trang Pham Aditya Ghose |
format |
Conference or Workshop Item |
author |
Morakot Choetkiertikul Hoa Khanh Dam Truyen Tran Trang Pham Aditya Ghose |
author_sort |
Morakot Choetkiertikul |
title |
Poster: Predicting components for issue reports using deep learning with information retrieval |
title_short |
Poster: Predicting components for issue reports using deep learning with information retrieval |
title_full |
Poster: Predicting components for issue reports using deep learning with information retrieval |
title_fullStr |
Poster: Predicting components for issue reports using deep learning with information retrieval |
title_full_unstemmed |
Poster: Predicting components for issue reports using deep learning with information retrieval |
title_sort |
poster: predicting components for issue reports using deep learning with information retrieval |
publishDate |
2019 |
url |
https://repository.li.mahidol.ac.th/handle/123456789/45635 |
_version_ |
1763493901093568512 |