A comparative analysis of bayesian network and ARIMA approaches to malaria outbreak prediction
© Springer International Publishing AG 2018. Disease outbreaks are important to predict since they indicate hot spots of transmission with high risk of spread to neighboring regions and can thus guide the allocation of resources. While numeric prediction models can be easily used for outbreak predic...
Saved in:
Main Authors: | A. H.M.Imrul Hasan, Peter Haddawy, Saranath Lawpoolsri |
---|---|
其他作者: | Mahidol University |
格式: | Conference or Workshop Item |
出版: |
2019
|
主題: | |
在線閱讀: | https://repository.li.mahidol.ac.th/handle/123456789/45672 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Mahidol University |
相似書籍
-
Integrating ARIMA and spatiotemporal Bayesian networks for high resolution malaria prediction
由: A. H.M.Imrul Hasan, et al.
出版: (2018) -
Spatiotemporal Bayesian networks for malaria prediction
由: Peter Haddawy, et al.
出版: (2019) -
Spatiotemporal Bayesian networks for malaria prediction: Case study of northern Thailand
由: Peter Haddawy, et al.
出版: (2018) -
AIC-Driven spatial hierarchical clustering: Case study for malaria prediction in northern Thailand
由: Peter Haddawy, et al.
出版: (2018) -
A study of individual human mobility patterns related to malaria transmission along the thai-myanmar border
由: Chaitawat Sa-Ngamuang, et al.
出版: (2020)