Size-based characterization of polysaccharides by Taylor dispersion analysis with photochemical oxidation or backscattering interferometry detections
Copyright © 2019 American Chemical Society. Taylor dispersion analysis (TDA) is a powerful sizing technique very well suited for (macro)molecules between angstroms and submicrons (typically up to 200 nm). However, new detection modes are required for non-UV-absorbing (macro)molecules such as most of...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2020
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/50560 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
Summary: | Copyright © 2019 American Chemical Society. Taylor dispersion analysis (TDA) is a powerful sizing technique very well suited for (macro)molecules between angstroms and submicrons (typically up to 200 nm). However, new detection modes are required for non-UV-absorbing (macro)molecules such as most of the polysaccharides, including starches. In this work, two different detection modes were compared, backscattering interferometry (BSI) and UV-photooxidation detection (UV-POD). TDA-BSI measures the relative change of the refractive index between eluent and sample (water as eluent in this work), whereas TDA-UV-POD detects the UV-absorbing photo-oxidized products of polysaccharides/starches in strong alkaline media (130 mM NaOH or 1 M KOH). TDA-UV-POD detection was evaluated for linearity and sensitivity at two wavelengths, 214 and 266 nm. The mass-average hydrodynamic radius (Rh) obtained by TDA-BSI and TDA-UV-POD was found to be in excellent agreement, whereas higher average Rh values were obtained by batch dynamic light scattering (DLS) under the same conditions, because of the higher sensitivity of DLS to large-size solutes and aggregates. The hydrodynamic radius distributions obtained by TDA and DLS are intrinsically different but both techniques were found to be complementary, providing useful information on sample dispersity. Owing to the absence of the stationary phase, low sample consumption with straightforward sample preparation (no filtration), and no calibration, TDA is anticipated to become a method of choice for the size-based characterization of polysaccharides, including starches. |
---|