Host-pathogen interaction for larvae oysters with salinity dependent transmission

© 2019, The Author(s). Mathematical models of host-pathogen interactions are proposed and analyzed. Here hosts are oyster population in a free-swimming larval stage and assumably live in the closed homogeneous environment. In terms of an epidemic, they are classified into two states, namely suscepti...

全面介紹

Saved in:
書目詳細資料
Main Authors: Kalanyu Sunthawanic, Kornkanok Bunwong, Wichuta Sae-jie
其他作者: South Carolina Commission on Higher Education
格式: Article
出版: 2020
主題:
在線閱讀:https://repository.li.mahidol.ac.th/handle/123456789/51197
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:© 2019, The Author(s). Mathematical models of host-pathogen interactions are proposed and analyzed. Here hosts are oyster population in a free-swimming larval stage and assumably live in the closed homogeneous environment. In terms of an epidemic, they are classified into two states, namely susceptible and infectious hosts. The epidemic model of oyster hosts with seasonal forced transmission is firstly described by the SIS model where the region of attraction, the existence of equilibrium points, their stability conditions, and upper and lower bounds on the attack rate are investigated. Then free-living pathogen is introduced in the oyster area. Numerical simulations are finally carried out by making use of the various salinity-dependent transmissions in support of the hypothesis that the lower the salinity level, the lower oyster’s immunity.