Bacterial Cytological Profiling as a Tool To Study Mechanisms of Action of Antibiotics That Are Active against Acinetobacter baumannii

Copyright © 2019 American Society for Microbiology. All Rights Reserved. An increasing number of multidrug-resistant Acinetobacter baumannii (MDR-AB) infections have been reported worldwide, posing a threat to public health. The establishment of methods to elucidate the mechanism of action (MOA) of...

Full description

Saved in:
Bibliographic Details
Main Authors: Htut Htut Htoo, Lauren Brumage, Vorrapon Chaikeeratisak, Hannah Tsunemoto, Joseph Sugie, Chanwit Tribuddharat, Joe Pogliano, Poochit Nonejuie
Other Authors: Division of Biological Sciences
Format: Article
Published: 2020
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/51773
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
id th-mahidol.51773
record_format dspace
spelling th-mahidol.517732020-01-27T16:58:42Z Bacterial Cytological Profiling as a Tool To Study Mechanisms of Action of Antibiotics That Are Active against Acinetobacter baumannii Htut Htut Htoo Lauren Brumage Vorrapon Chaikeeratisak Hannah Tsunemoto Joseph Sugie Chanwit Tribuddharat Joe Pogliano Poochit Nonejuie Division of Biological Sciences Chulalongkorn University Mahidol University Faculty of Medicine, Siriraj Hospital, Mahidol University Medicine Copyright © 2019 American Society for Microbiology. All Rights Reserved. An increasing number of multidrug-resistant Acinetobacter baumannii (MDR-AB) infections have been reported worldwide, posing a threat to public health. The establishment of methods to elucidate the mechanism of action (MOA) of A. baumannii-specific antibiotics is needed to develop novel antimicrobial therapeutics with activity against MDR-AB. We previously developed bacterial cytological profiling (BCP) to understand the MOA of compounds in Escherichia coli and Bacillus subtilis. Given how distantly related A. baumannii is to these species, it was unclear to what extent it could be applied. Here, we implemented BCP as an antibiotic MOA discovery platform for A. baumannii. We found that the BCP platform can distinguish among six major antibiotic classes and can also subclassify antibiotics that inhibit the same cellular pathway but have different molecular targets. We used BCP to show that the compound NSC145612 inhibits the growth of A. baumannii via targeting RNA transcription. We confirmed this result by isolating and characterizing resistant mutants with mutations in the rpoB gene. Altogether, we conclude that BCP provides a useful tool for MOA studies of antibacterial compounds that are active against A. baumannii. 2020-01-27T09:58:42Z 2020-01-27T09:58:42Z 2019-04-01 Article Antimicrobial Agents and Chemotherapy. Vol.63, No.4 (2019) 10.1128/AAC.02310-18 10986596 00664804 2-s2.0-85063612049 https://repository.li.mahidol.ac.th/handle/123456789/51773 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063612049&origin=inward
institution Mahidol University
building Mahidol University Library
continent Asia
country Thailand
Thailand
content_provider Mahidol University Library
collection Mahidol University Institutional Repository
topic Medicine
spellingShingle Medicine
Htut Htut Htoo
Lauren Brumage
Vorrapon Chaikeeratisak
Hannah Tsunemoto
Joseph Sugie
Chanwit Tribuddharat
Joe Pogliano
Poochit Nonejuie
Bacterial Cytological Profiling as a Tool To Study Mechanisms of Action of Antibiotics That Are Active against Acinetobacter baumannii
description Copyright © 2019 American Society for Microbiology. All Rights Reserved. An increasing number of multidrug-resistant Acinetobacter baumannii (MDR-AB) infections have been reported worldwide, posing a threat to public health. The establishment of methods to elucidate the mechanism of action (MOA) of A. baumannii-specific antibiotics is needed to develop novel antimicrobial therapeutics with activity against MDR-AB. We previously developed bacterial cytological profiling (BCP) to understand the MOA of compounds in Escherichia coli and Bacillus subtilis. Given how distantly related A. baumannii is to these species, it was unclear to what extent it could be applied. Here, we implemented BCP as an antibiotic MOA discovery platform for A. baumannii. We found that the BCP platform can distinguish among six major antibiotic classes and can also subclassify antibiotics that inhibit the same cellular pathway but have different molecular targets. We used BCP to show that the compound NSC145612 inhibits the growth of A. baumannii via targeting RNA transcription. We confirmed this result by isolating and characterizing resistant mutants with mutations in the rpoB gene. Altogether, we conclude that BCP provides a useful tool for MOA studies of antibacterial compounds that are active against A. baumannii.
author2 Division of Biological Sciences
author_facet Division of Biological Sciences
Htut Htut Htoo
Lauren Brumage
Vorrapon Chaikeeratisak
Hannah Tsunemoto
Joseph Sugie
Chanwit Tribuddharat
Joe Pogliano
Poochit Nonejuie
format Article
author Htut Htut Htoo
Lauren Brumage
Vorrapon Chaikeeratisak
Hannah Tsunemoto
Joseph Sugie
Chanwit Tribuddharat
Joe Pogliano
Poochit Nonejuie
author_sort Htut Htut Htoo
title Bacterial Cytological Profiling as a Tool To Study Mechanisms of Action of Antibiotics That Are Active against Acinetobacter baumannii
title_short Bacterial Cytological Profiling as a Tool To Study Mechanisms of Action of Antibiotics That Are Active against Acinetobacter baumannii
title_full Bacterial Cytological Profiling as a Tool To Study Mechanisms of Action of Antibiotics That Are Active against Acinetobacter baumannii
title_fullStr Bacterial Cytological Profiling as a Tool To Study Mechanisms of Action of Antibiotics That Are Active against Acinetobacter baumannii
title_full_unstemmed Bacterial Cytological Profiling as a Tool To Study Mechanisms of Action of Antibiotics That Are Active against Acinetobacter baumannii
title_sort bacterial cytological profiling as a tool to study mechanisms of action of antibiotics that are active against acinetobacter baumannii
publishDate 2020
url https://repository.li.mahidol.ac.th/handle/123456789/51773
_version_ 1763497549313867776