Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow

© 2020. The American Astronomical Society.. We report on the observations of gamma-ray burst (GRB) 190114C by the Fermi Gamma-ray Space Telescope and the Neil Gehrels Swift Observatory. The prompt gamma-ray emission was detected by the Fermi GRB Monitor (GBM), the Fermi Large Area Telescope (LAT), a...

Full description

Saved in:
Bibliographic Details
Main Authors: M. Ajello, M. Arimoto, M. Axelsson, L. Baldini, G. Barbiellini, D. Bastieri, R. Bellazzini, A. Berretta, E. Bissaldi, R. D. Blandford, R. Bonino, E. Bottacini, J. Bregeon, P. Bruel, R. Buehler, E. Burns, S. Buson, R. A. Cameron, R. Caputo, P. A. Caraveo, E. Cavazzuti, S. Chen, G. Chiaro, S. Ciprini, J. Cohen-Tanugi, D. Costantin, S. Cutini, F. D'Ammando, M. Deklotz, P. De La Torre Luque, F. De Palma, A. Desai, N. Di Lalla, L. Di Venere, F. Fana Dirirsa, S. J. Fegan, A. Franckowiak, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, N. Giglietto, R. Gill, F. Giordano, M. Giroletti, J. Granot, D. Green, I. A. Grenier, M. H. Grondin, S. Guiriec, E. Hays, D. Horan, G. Jóhannesson, D. Kocevski, M. Kovac'Evic', M. Kuss, S. Larsson, L. Latronico, M. Lemoine-Goumard, J. Li, I. Liodakis, F. Longo, F. Loparco, M. N. Lovellette, P. Lubrano, S. Maldera, D. Malyshev, A. Manfreda, G. Martí-Devesa, M. N. Mazziotta, J. E. McEnery, I. Mereu, M. Meyer, P. F. Michelson, W. Mitthumsiri, T. Mizuno, M. E. Monzani, E. Moretti, A. Morselli, I. V. Moskalenko, M. Negro, E. Nuss, N. Omodei, M. Orienti, E. Orlando, M. Palatiello, V. S. Paliya, D. Paneque, Z. Pei, M. Persic, M. Pesce-Rollins, V. Petrosian, F. Piron, H. Poon, T. A. Porter, G. Principe, J. L. Racusin, S. Rain, R. Rando
Other Authors: Istituto Nazionale di Fisica Nucleare, Sezione di Trieste
Format: Article
Published: 2020
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/54540
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
id th-mahidol.54540
record_format dspace
institution Mahidol University
building Mahidol University Library
continent Asia
country Thailand
Thailand
content_provider Mahidol University Library
collection Mahidol University Institutional Repository
topic Earth and Planetary Sciences
Physics and Astronomy
spellingShingle Earth and Planetary Sciences
Physics and Astronomy
M. Ajello
M. Arimoto
M. Axelsson
L. Baldini
G. Barbiellini
D. Bastieri
R. Bellazzini
A. Berretta
E. Bissaldi
R. D. Blandford
R. Bonino
E. Bottacini
J. Bregeon
P. Bruel
R. Buehler
E. Burns
S. Buson
R. A. Cameron
R. Caputo
P. A. Caraveo
E. Cavazzuti
S. Chen
G. Chiaro
S. Ciprini
J. Cohen-Tanugi
D. Costantin
S. Cutini
F. D'Ammando
M. Deklotz
P. De La Torre Luque
F. De Palma
A. Desai
N. Di Lalla
L. Di Venere
F. Fana Dirirsa
S. J. Fegan
A. Franckowiak
Y. Fukazawa
S. Funk
P. Fusco
F. Gargano
D. Gasparrini
N. Giglietto
R. Gill
F. Giordano
M. Giroletti
J. Granot
D. Green
I. A. Grenier
M. H. Grondin
S. Guiriec
E. Hays
D. Horan
G. Jóhannesson
D. Kocevski
M. Kovac'Evic'
M. Kuss
S. Larsson
L. Latronico
M. Lemoine-Goumard
J. Li
I. Liodakis
F. Longo
F. Loparco
M. N. Lovellette
P. Lubrano
S. Maldera
D. Malyshev
A. Manfreda
G. Martí-Devesa
M. N. Mazziotta
J. E. McEnery
I. Mereu
M. Meyer
P. F. Michelson
W. Mitthumsiri
T. Mizuno
M. E. Monzani
E. Moretti
A. Morselli
I. V. Moskalenko
M. Negro
E. Nuss
N. Omodei
M. Orienti
E. Orlando
M. Palatiello
V. S. Paliya
D. Paneque
Z. Pei
M. Persic
M. Pesce-Rollins
V. Petrosian
F. Piron
H. Poon
T. A. Porter
G. Principe
J. L. Racusin
S. Rain
R. Rando
Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow
description © 2020. The American Astronomical Society.. We report on the observations of gamma-ray burst (GRB) 190114C by the Fermi Gamma-ray Space Telescope and the Neil Gehrels Swift Observatory. The prompt gamma-ray emission was detected by the Fermi GRB Monitor (GBM), the Fermi Large Area Telescope (LAT), and the Swift Burst Alert Telescope (BAT) and the long-lived afterglow emission was subsequently observed by the GBM, LAT, Swift X-ray Telescope (XRT), and Swift UV Optical Telescope. The early-time observations reveal multiple emission components that evolve independently, with a delayed power-law component that exhibits significant spectral attenuation above 40 MeV in the first few seconds of the burst. This power-law component transitions to a harder spectrum that is consistent with the afterglow emission observed by the XRT at later times. This afterglow component is clearly identifiable in the GBM and BAT light curves as a slowly fading emission component on which the rest of the prompt emission is superimposed. As a result, we are able to observe the transition from internal-shock- to external-shock-dominated emission. We find that the temporal and spectral evolution of the broadband afterglow emission can be well modeled as synchrotron emission from a forward shock propagating into a wind-like circumstellar environment. We estimate the initial bulk Lorentz factor using the observed high-energy spectral cutoff. Considering the onset of the afterglow component, we constrain the deceleration radius at which this forward shock begins to radiate in order to estimate the maximum synchrotron energy as a function of time. We find that even in the LAT energy range, there exist high-energy photons that are in tension with the theoretical maximum energy that can be achieved through synchrotron emission from a shock. These violations of the maximum synchrotron energy are further compounded by the detection of very high-energy (VHE) emission above 300 GeV by MAGIC concurrent with our observations. We conclude that the observations of VHE photons from GRB 190114C necessitates either an additional emission mechanism at very high energies that is hidden in the synchrotron component in the LAT energy range, an acceleration mechanism that imparts energy to the particles at a rate that is faster than the electron synchrotron energy-loss rate, or revisions of the fundamental assumptions used in estimating the maximum photon energy attainable through the synchrotron process.
author2 Istituto Nazionale di Fisica Nucleare, Sezione di Trieste
author_facet Istituto Nazionale di Fisica Nucleare, Sezione di Trieste
M. Ajello
M. Arimoto
M. Axelsson
L. Baldini
G. Barbiellini
D. Bastieri
R. Bellazzini
A. Berretta
E. Bissaldi
R. D. Blandford
R. Bonino
E. Bottacini
J. Bregeon
P. Bruel
R. Buehler
E. Burns
S. Buson
R. A. Cameron
R. Caputo
P. A. Caraveo
E. Cavazzuti
S. Chen
G. Chiaro
S. Ciprini
J. Cohen-Tanugi
D. Costantin
S. Cutini
F. D'Ammando
M. Deklotz
P. De La Torre Luque
F. De Palma
A. Desai
N. Di Lalla
L. Di Venere
F. Fana Dirirsa
S. J. Fegan
A. Franckowiak
Y. Fukazawa
S. Funk
P. Fusco
F. Gargano
D. Gasparrini
N. Giglietto
R. Gill
F. Giordano
M. Giroletti
J. Granot
D. Green
I. A. Grenier
M. H. Grondin
S. Guiriec
E. Hays
D. Horan
G. Jóhannesson
D. Kocevski
M. Kovac'Evic'
M. Kuss
S. Larsson
L. Latronico
M. Lemoine-Goumard
J. Li
I. Liodakis
F. Longo
F. Loparco
M. N. Lovellette
P. Lubrano
S. Maldera
D. Malyshev
A. Manfreda
G. Martí-Devesa
M. N. Mazziotta
J. E. McEnery
I. Mereu
M. Meyer
P. F. Michelson
W. Mitthumsiri
T. Mizuno
M. E. Monzani
E. Moretti
A. Morselli
I. V. Moskalenko
M. Negro
E. Nuss
N. Omodei
M. Orienti
E. Orlando
M. Palatiello
V. S. Paliya
D. Paneque
Z. Pei
M. Persic
M. Pesce-Rollins
V. Petrosian
F. Piron
H. Poon
T. A. Porter
G. Principe
J. L. Racusin
S. Rain
R. Rando
format Article
author M. Ajello
M. Arimoto
M. Axelsson
L. Baldini
G. Barbiellini
D. Bastieri
R. Bellazzini
A. Berretta
E. Bissaldi
R. D. Blandford
R. Bonino
E. Bottacini
J. Bregeon
P. Bruel
R. Buehler
E. Burns
S. Buson
R. A. Cameron
R. Caputo
P. A. Caraveo
E. Cavazzuti
S. Chen
G. Chiaro
S. Ciprini
J. Cohen-Tanugi
D. Costantin
S. Cutini
F. D'Ammando
M. Deklotz
P. De La Torre Luque
F. De Palma
A. Desai
N. Di Lalla
L. Di Venere
F. Fana Dirirsa
S. J. Fegan
A. Franckowiak
Y. Fukazawa
S. Funk
P. Fusco
F. Gargano
D. Gasparrini
N. Giglietto
R. Gill
F. Giordano
M. Giroletti
J. Granot
D. Green
I. A. Grenier
M. H. Grondin
S. Guiriec
E. Hays
D. Horan
G. Jóhannesson
D. Kocevski
M. Kovac'Evic'
M. Kuss
S. Larsson
L. Latronico
M. Lemoine-Goumard
J. Li
I. Liodakis
F. Longo
F. Loparco
M. N. Lovellette
P. Lubrano
S. Maldera
D. Malyshev
A. Manfreda
G. Martí-Devesa
M. N. Mazziotta
J. E. McEnery
I. Mereu
M. Meyer
P. F. Michelson
W. Mitthumsiri
T. Mizuno
M. E. Monzani
E. Moretti
A. Morselli
I. V. Moskalenko
M. Negro
E. Nuss
N. Omodei
M. Orienti
E. Orlando
M. Palatiello
V. S. Paliya
D. Paneque
Z. Pei
M. Persic
M. Pesce-Rollins
V. Petrosian
F. Piron
H. Poon
T. A. Porter
G. Principe
J. L. Racusin
S. Rain
R. Rando
author_sort M. Ajello
title Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow
title_short Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow
title_full Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow
title_fullStr Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow
title_full_unstemmed Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow
title_sort fermi and swift observations of grb 190114c: tracing the evolution of high-energy emission from prompt to afterglow
publishDate 2020
url https://repository.li.mahidol.ac.th/handle/123456789/54540
_version_ 1763487333410144256
spelling th-mahidol.545402020-05-05T13:07:35Z Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow M. Ajello M. Arimoto M. Axelsson L. Baldini G. Barbiellini D. Bastieri R. Bellazzini A. Berretta E. Bissaldi R. D. Blandford R. Bonino E. Bottacini J. Bregeon P. Bruel R. Buehler E. Burns S. Buson R. A. Cameron R. Caputo P. A. Caraveo E. Cavazzuti S. Chen G. Chiaro S. Ciprini J. Cohen-Tanugi D. Costantin S. Cutini F. D'Ammando M. Deklotz P. De La Torre Luque F. De Palma A. Desai N. Di Lalla L. Di Venere F. Fana Dirirsa S. J. Fegan A. Franckowiak Y. Fukazawa S. Funk P. Fusco F. Gargano D. Gasparrini N. Giglietto R. Gill F. Giordano M. Giroletti J. Granot D. Green I. A. Grenier M. H. Grondin S. Guiriec E. Hays D. Horan G. Jóhannesson D. Kocevski M. Kovac'Evic' M. Kuss S. Larsson L. Latronico M. Lemoine-Goumard J. Li I. Liodakis F. Longo F. Loparco M. N. Lovellette P. Lubrano S. Maldera D. Malyshev A. Manfreda G. Martí-Devesa M. N. Mazziotta J. E. McEnery I. Mereu M. Meyer P. F. Michelson W. Mitthumsiri T. Mizuno M. E. Monzani E. Moretti A. Morselli I. V. Moskalenko M. Negro E. Nuss N. Omodei M. Orienti E. Orlando M. Palatiello V. S. Paliya D. Paneque Z. Pei M. Persic M. Pesce-Rollins V. Petrosian F. Piron H. Poon T. A. Porter G. Principe J. L. Racusin S. Rain R. Rando Istituto Nazionale di Fisica Nucleare, Sezione di Trieste Istituto Nazionale di Fisica Nucleare, Sezione di Perugia Istituto Nazionale di Fisica Nucleare, Sezione di Bari Istituto Nazionale di Fisica Nucleare, Sezione di Torino Istituto Nazionale di Fisica Nucleare, Sezione di Pisa Istituto Nazionale Di Fisica Nucleare, Sezione di Padova Laboratoire Univers et Particules de Montpellier Universite Paris-Saclay Laboratoire Leprince-Ringuet INAF Istituto di Astrofisica Spaziale e Fisica Cosmica, Milan University Science Institute Reykjavik Centre d'Etudes Nucléaires de Bordeaux Gradignan Agenzia Spaziale Italiana Hiroshima University Deutsches Elektronen-Synchrotron (DESY) Osservatorio Astronomico di Trieste Università di Pisa Stockholms universitet Naval Research Laboratory Clemson University SLAC National Accelerator Laboratory Kanazawa University Universitat Autònoma de Barcelona Università degli Studi di Bari Open University of Israel Istituto Nazionale di Fisica Nucleare - INFN University of Maryland Università degli Studi di Trieste Högskolan Dalarna Mahidol University Julius-Maximilians-Universität Würzburg Istituto Di Radioastronomia, Bologna Università degli Studi di Torino NASA Marshall Space Flight Center Max Planck Institute for Physics (Werner Heisenberg Institute) Medizinische Universitat Innsbruck NASA Goddard Space Flight Center The George Washington University Università degli Studi di Perugia The Royal Institute of Technology (KTH) Friedrich-Alexander-Universität Erlangen-Nürnberg University of Johannesburg Università degli Studi di Padova Stellar Solutions, Inc. Earth and Planetary Sciences Physics and Astronomy © 2020. The American Astronomical Society.. We report on the observations of gamma-ray burst (GRB) 190114C by the Fermi Gamma-ray Space Telescope and the Neil Gehrels Swift Observatory. The prompt gamma-ray emission was detected by the Fermi GRB Monitor (GBM), the Fermi Large Area Telescope (LAT), and the Swift Burst Alert Telescope (BAT) and the long-lived afterglow emission was subsequently observed by the GBM, LAT, Swift X-ray Telescope (XRT), and Swift UV Optical Telescope. The early-time observations reveal multiple emission components that evolve independently, with a delayed power-law component that exhibits significant spectral attenuation above 40 MeV in the first few seconds of the burst. This power-law component transitions to a harder spectrum that is consistent with the afterglow emission observed by the XRT at later times. This afterglow component is clearly identifiable in the GBM and BAT light curves as a slowly fading emission component on which the rest of the prompt emission is superimposed. As a result, we are able to observe the transition from internal-shock- to external-shock-dominated emission. We find that the temporal and spectral evolution of the broadband afterglow emission can be well modeled as synchrotron emission from a forward shock propagating into a wind-like circumstellar environment. We estimate the initial bulk Lorentz factor using the observed high-energy spectral cutoff. Considering the onset of the afterglow component, we constrain the deceleration radius at which this forward shock begins to radiate in order to estimate the maximum synchrotron energy as a function of time. We find that even in the LAT energy range, there exist high-energy photons that are in tension with the theoretical maximum energy that can be achieved through synchrotron emission from a shock. These violations of the maximum synchrotron energy are further compounded by the detection of very high-energy (VHE) emission above 300 GeV by MAGIC concurrent with our observations. We conclude that the observations of VHE photons from GRB 190114C necessitates either an additional emission mechanism at very high energies that is hidden in the synchrotron component in the LAT energy range, an acceleration mechanism that imparts energy to the particles at a rate that is faster than the electron synchrotron energy-loss rate, or revisions of the fundamental assumptions used in estimating the maximum photon energy attainable through the synchrotron process. 2020-05-05T05:19:34Z 2020-05-05T05:19:34Z 2020-02-10 Article Astrophysical Journal. Vol.890, No.1 (2020) 10.3847/1538-4357/ab5b05 15384357 0004637X 2-s2.0-85082428333 https://repository.li.mahidol.ac.th/handle/123456789/54540 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082428333&origin=inward