Biokinetic model of radioiodine I-131 in nine thyroid cancer patients subjected to in-vivo gamma camera scanning: A simplified five-compartmental model
© 2020 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. A five-compartmental biokinetic model of I-1...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2020
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/56077 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
id |
th-mahidol.56077 |
---|---|
record_format |
dspace |
spelling |
th-mahidol.560772020-06-02T12:49:23Z Biokinetic model of radioiodine I-131 in nine thyroid cancer patients subjected to in-vivo gamma camera scanning: A simplified five-compartmental model Chao Chun Huang Ya Hui Lin Samrit Kittipayak Yi Shi Hwua Shan Ying Wang Lung Kwang Pan Taichung Armed Forces General Hospital Far Eastern Memorial Hospital Taiwan Central Taiwan University of Science and Technology Mahidol University Agricultural and Biological Sciences Biochemistry, Genetics and Molecular Biology Multidisciplinary © 2020 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. A five-compartmental biokinetic model of I-131 radioiodine based on in-vivo gamma camera scanning results was developed and successfully applied to nine thyroid cancer patients who were administered 1,110 MBq I-131 in capsules for the residual thyroid gland ablation. The I-131 solution activity among internal organs was analyzed via the revised biokinetic model of iodine recommended by the ICRP-30 and -56 reports. Accordingly, a five-compartmental (stomach, body fluid, thyroid, whole body, and excretion) model was established to simulate the metabolic mechanism of I-131 in thyroid cancer patients, whereas the respective four simultaneous differential equations were solved via a self-developed program run in MATLAB. This made it possible to provide a close correlation between MATLAB simulation results and empirical data. The latter data were collected through in-vivo gamma camera scans of nine patients obtained after 1, 4, 24, 48, 72, and 168 hours after radioactive I-131 administration. The average biological half-life values for the stomach, body fluid, thyroid, and whole body of thyroid cancer patients under study were 0.54±0.32, 12.6±1.8, 42.8±5.1, and 12.6±1.8 h, respectively. The corresponding branching ratios I12, I23, I25, I34, I42, and I45 as denoted in the biokinetic model of iodine were 1.0, 0.21±0.14, 0.79±0.14, 1.0, 0.1, and 0.9, respectively. The average values of the AT dimensionless index used to verify the agreement between empirical and numerical simulation results were 0.056±0.017, 0.017±0.014, 0.044±0.023, and 0.045±0.009 for the stomach, thyroid, body fluid + whole body, and total, respectively. The results obtained were considered quite instrumental in the elucidation of metabolic mechanisms in the human body, particularly in thyroid cancer patients. 2020-06-02T03:58:35Z 2020-06-02T03:58:35Z 2020-05-01 Article PLoS ONE. Vol.15, No.5 (2020) 10.1371/journal.pone.0232480 19326203 2-s2.0-85084277510 https://repository.li.mahidol.ac.th/handle/123456789/56077 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084277510&origin=inward |
institution |
Mahidol University |
building |
Mahidol University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Mahidol University Library |
collection |
Mahidol University Institutional Repository |
topic |
Agricultural and Biological Sciences Biochemistry, Genetics and Molecular Biology Multidisciplinary |
spellingShingle |
Agricultural and Biological Sciences Biochemistry, Genetics and Molecular Biology Multidisciplinary Chao Chun Huang Ya Hui Lin Samrit Kittipayak Yi Shi Hwua Shan Ying Wang Lung Kwang Pan Biokinetic model of radioiodine I-131 in nine thyroid cancer patients subjected to in-vivo gamma camera scanning: A simplified five-compartmental model |
description |
© 2020 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. A five-compartmental biokinetic model of I-131 radioiodine based on in-vivo gamma camera scanning results was developed and successfully applied to nine thyroid cancer patients who were administered 1,110 MBq I-131 in capsules for the residual thyroid gland ablation. The I-131 solution activity among internal organs was analyzed via the revised biokinetic model of iodine recommended by the ICRP-30 and -56 reports. Accordingly, a five-compartmental (stomach, body fluid, thyroid, whole body, and excretion) model was established to simulate the metabolic mechanism of I-131 in thyroid cancer patients, whereas the respective four simultaneous differential equations were solved via a self-developed program run in MATLAB. This made it possible to provide a close correlation between MATLAB simulation results and empirical data. The latter data were collected through in-vivo gamma camera scans of nine patients obtained after 1, 4, 24, 48, 72, and 168 hours after radioactive I-131 administration. The average biological half-life values for the stomach, body fluid, thyroid, and whole body of thyroid cancer patients under study were 0.54±0.32, 12.6±1.8, 42.8±5.1, and 12.6±1.8 h, respectively. The corresponding branching ratios I12, I23, I25, I34, I42, and I45 as denoted in the biokinetic model of iodine were 1.0, 0.21±0.14, 0.79±0.14, 1.0, 0.1, and 0.9, respectively. The average values of the AT dimensionless index used to verify the agreement between empirical and numerical simulation results were 0.056±0.017, 0.017±0.014, 0.044±0.023, and 0.045±0.009 for the stomach, thyroid, body fluid + whole body, and total, respectively. The results obtained were considered quite instrumental in the elucidation of metabolic mechanisms in the human body, particularly in thyroid cancer patients. |
author2 |
Taichung Armed Forces General Hospital |
author_facet |
Taichung Armed Forces General Hospital Chao Chun Huang Ya Hui Lin Samrit Kittipayak Yi Shi Hwua Shan Ying Wang Lung Kwang Pan |
format |
Article |
author |
Chao Chun Huang Ya Hui Lin Samrit Kittipayak Yi Shi Hwua Shan Ying Wang Lung Kwang Pan |
author_sort |
Chao Chun Huang |
title |
Biokinetic model of radioiodine I-131 in nine thyroid cancer patients subjected to in-vivo gamma camera scanning: A simplified five-compartmental model |
title_short |
Biokinetic model of radioiodine I-131 in nine thyroid cancer patients subjected to in-vivo gamma camera scanning: A simplified five-compartmental model |
title_full |
Biokinetic model of radioiodine I-131 in nine thyroid cancer patients subjected to in-vivo gamma camera scanning: A simplified five-compartmental model |
title_fullStr |
Biokinetic model of radioiodine I-131 in nine thyroid cancer patients subjected to in-vivo gamma camera scanning: A simplified five-compartmental model |
title_full_unstemmed |
Biokinetic model of radioiodine I-131 in nine thyroid cancer patients subjected to in-vivo gamma camera scanning: A simplified five-compartmental model |
title_sort |
biokinetic model of radioiodine i-131 in nine thyroid cancer patients subjected to in-vivo gamma camera scanning: a simplified five-compartmental model |
publishDate |
2020 |
url |
https://repository.li.mahidol.ac.th/handle/123456789/56077 |
_version_ |
1763497643113185280 |