Development of MMM95 transport model for predicting deuteron and carbon ion densities evolution in H-mode tokamak

© 2020, Chiang Mai University. All rights reserved. The BALDUR code is used for predicting core profiles in H-mode plasma, by employing a combination of the MMM95 anomalous transport model and the NCLASS neoclassical transport model. The pedestal temperature and density of Deuteron and Carbon are ta...

Full description

Saved in:
Bibliographic Details
Main Authors: Wannapa Buangam, Sujin Suwanna, Thawatchai Onjun
Other Authors: Mahidol University
Format: Article
Published: 2020
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/56142
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:© 2020, Chiang Mai University. All rights reserved. The BALDUR code is used for predicting core profiles in H-mode plasma, by employing a combination of the MMM95 anomalous transport model and the NCLASS neoclassical transport model. The pedestal temperature and density of Deuteron and Carbon are taken from the experiment as a boundary conditions in the simulations. The simulated profiles, including those of the electron and ion temperature, electron, Deuteron and Carbon ion density profiles, are compared with the corresponding experimental data. The multi-parameter optimization is used for obtaining the most suitable coefficients for hydrogenic and impurity diffusion coefficient for new MMM95 transport model. This new set of coefficients for hydrogenic and impurity transport can improve the prediction of the electron and ion temperature, electron, Deuteron and Carbon ion density profiles of JET H-mode discharges within the RMS errors of 13%.