A Competent Hepatocyte Model Examining Hepatitis B Virus Entry through Sodium Taurocholate Cotransporting Polypeptide as a Therapeutic Target

Hepatitis B virus (HBV) infection has been considered a crucial risk factor for hepatocellular carcinoma. Current treatment can only lessen the viral load but not result in complete remission. An efficient hepatocyte model for HBV infection would offer a true-to-life viral life cycle that would be c...

Full description

Saved in:
Bibliographic Details
Main Authors: Khanit Sa-Ngiamsuntorn, Piyanoot Thongsri, Yongyut Pewkliang, Suparerk Borwornpinyo, Adisak Wongkajornsilp
Other Authors: Siriraj Hospital
Format: Article
Published: 2022
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/73320
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:Hepatitis B virus (HBV) infection has been considered a crucial risk factor for hepatocellular carcinoma. Current treatment can only lessen the viral load but not result in complete remission. An efficient hepatocyte model for HBV infection would offer a true-to-life viral life cycle that would be crucial for the screening of therapeutic agents. Most available anti-HBV agents target lifecycle stages post viral entry but not before viral entry. This protocol details the generation of a competent hepatocyte model capable of screening for therapeutic agents targeting pre-viral entry and post viral entry lifecycle stages. This includes the targeting of sodium taurocholate cotransporting polypeptide (NTCP) binding, cccDNA formation, transcription, and viral assembly based on imHC or HepaRG as host cells. Here, the HBV entry inhibition assay used curcumin to inhibit HBV binding and transporting functions via NTCP. The inhibitors were evaluated for binding affinity (KD) with NTCP using isothermal titration calorimetry (ITC)-a universal tool for HBV drug screening based on thermodynamic parameters.