Production of recombinant β-glucocerebrosidase in wild-type and glycoengineered transgenic Nicotiana benthamiana root cultures with different N-glycan profiles

Gaucher disease is an inherited lysosomal storage disorder caused by an insufficiency of active β-glucocerebrosidase (GCase). Exogenous recombinant GCase via enzyme replacement therapy is considered the most practical treatment for Gaucher disease. Mannose receptors mediate the efficient uptake of e...

Full description

Saved in:
Bibliographic Details
Main Authors: Naphatsamon Uthailak, Hiroyuki Kajiura, Ryo Misaki, Kazuhito Fujiyama
Other Authors: Osaka University
Format: Article
Published: 2022
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/73342
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:Gaucher disease is an inherited lysosomal storage disorder caused by an insufficiency of active β-glucocerebrosidase (GCase). Exogenous recombinant GCase via enzyme replacement therapy is considered the most practical treatment for Gaucher disease. Mannose receptors mediate the efficient uptake of exogenous GCase into macrophages. Thus, terminal mannose residues on N-glycans are essential for the delivery of exogenous GCase. In this study, recombinant GCase was produced in root cultures of wild-type (WT) and glycoengineered transgenic Nicotiana benthamiana with downregulated N-acetylglucosaminyltransferase I expression. Root cultures of WT and glycoengineered transgenic N. benthamiana plants were successfully generated by the induction of plant hormones. Recombinant GCases produced in both root cultures possessed GCase enzyme activity. Purified GCases derived from both root cultures revealed different N-glycan profiles. The WT-derived GCase possessed the predominant plant-type N-glycans, which contain plant-specific sugars-linkages, specifically β1,2-xylose and α1,3-fucose residues. Notably, the mannosidic-type N-glycans with terminal mannose residues were abundant in the purified GCase derived from glycoengineered N. benthamiana root culture. This research provides a promising plant-based system for the production of recombinant GCase with terminal mannose residues on N-glycans.