External validation of prognostic models for chronic kidney disease among type 2 diabetes

Background: Various prognostic models have been derived to predict chronic kidney disease (CKD) development in type 2 diabetes (T2D). However, their generalisability and predictive performance in different populations remain largely unvalidated. This study aimed to externally validate several progno...

Full description

Saved in:
Bibliographic Details
Main Authors: Sigit Ari Saputro, Anuchate Pattanateepapon, Oraluck Pattanaprateep, Wichai Aekplakorn, Gareth J. McKay, John Attia, Ammarin Thakkinstian
Other Authors: School of Medicine and Public Health
Format: Article
Published: 2022
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/74423
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
id th-mahidol.74423
record_format dspace
spelling th-mahidol.744232022-08-04T11:18:28Z External validation of prognostic models for chronic kidney disease among type 2 diabetes Sigit Ari Saputro Anuchate Pattanateepapon Oraluck Pattanaprateep Wichai Aekplakorn Gareth J. McKay John Attia Ammarin Thakkinstian School of Medicine and Public Health Universitas Airlangga Faculty of Medicine Ramathibodi Hospital, Mahidol University School of Medicine, Dentistry and Biomedical Sciences Medicine Background: Various prognostic models have been derived to predict chronic kidney disease (CKD) development in type 2 diabetes (T2D). However, their generalisability and predictive performance in different populations remain largely unvalidated. This study aimed to externally validate several prognostic models of CKD in a T2D Thai cohort. Methods: A nationwide survey was linked with hospital databases to create a prospective cohort of patients with diabetes (n = 3416). We undertook a systematic review to identify prognostic models and traditional metrics (i.e., discrimination and calibration) to compare model performance for CKD prediction. We updated prognostic models by including additional clinical parameters to optimise model performance in the Thai setting. Results: Six relevant previously published models were identified. At baseline, C-statistics ranged from 0.585 (0.565–0.605) to 0.786 (0.765–0.806) for CKD and 0.657 (0.610–0.703) to 0.760 (0.705–0.816) for end-stage renal disease (ESRD). All original CKD models showed fair calibration with Observed/Expected (O/E) ratios ranging from 0.999 (0.975–1.024) to 1.009 (0.929–1.090). Hosmer–Lemeshow tests indicated a good fit for all models. The addition of routine clinical factors (i.e., glucose level and oral diabetes medications) enhanced model prediction by improved C-statistics of Low’s of 0.114 for CKD and Elley’s of 0.025 for ESRD. Conclusions: All models showed moderate discrimination and fair calibration. Updating models to include routine clinical factors substantially enhanced their accuracy. Low’s (developed in Singapore) and Elley’s model (developed in New Zealand), outperformed the other models evaluated. These models can assist clinicians to improve the risk-stratification of diabetic patients for CKD and/or ESRD in the regions settings are similar to Thailand. Graphical abstract: [Figure not available: see fulltext.] 2022-08-04T04:18:28Z 2022-08-04T04:18:28Z 2022-07-01 Article Journal of Nephrology. Vol.35, No.6 (2022), 1637-1653 10.1007/s40620-021-01220-w 17246059 11218428 2-s2.0-85122691941 https://repository.li.mahidol.ac.th/handle/123456789/74423 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85122691941&origin=inward
institution Mahidol University
building Mahidol University Library
continent Asia
country Thailand
Thailand
content_provider Mahidol University Library
collection Mahidol University Institutional Repository
topic Medicine
spellingShingle Medicine
Sigit Ari Saputro
Anuchate Pattanateepapon
Oraluck Pattanaprateep
Wichai Aekplakorn
Gareth J. McKay
John Attia
Ammarin Thakkinstian
External validation of prognostic models for chronic kidney disease among type 2 diabetes
description Background: Various prognostic models have been derived to predict chronic kidney disease (CKD) development in type 2 diabetes (T2D). However, their generalisability and predictive performance in different populations remain largely unvalidated. This study aimed to externally validate several prognostic models of CKD in a T2D Thai cohort. Methods: A nationwide survey was linked with hospital databases to create a prospective cohort of patients with diabetes (n = 3416). We undertook a systematic review to identify prognostic models and traditional metrics (i.e., discrimination and calibration) to compare model performance for CKD prediction. We updated prognostic models by including additional clinical parameters to optimise model performance in the Thai setting. Results: Six relevant previously published models were identified. At baseline, C-statistics ranged from 0.585 (0.565–0.605) to 0.786 (0.765–0.806) for CKD and 0.657 (0.610–0.703) to 0.760 (0.705–0.816) for end-stage renal disease (ESRD). All original CKD models showed fair calibration with Observed/Expected (O/E) ratios ranging from 0.999 (0.975–1.024) to 1.009 (0.929–1.090). Hosmer–Lemeshow tests indicated a good fit for all models. The addition of routine clinical factors (i.e., glucose level and oral diabetes medications) enhanced model prediction by improved C-statistics of Low’s of 0.114 for CKD and Elley’s of 0.025 for ESRD. Conclusions: All models showed moderate discrimination and fair calibration. Updating models to include routine clinical factors substantially enhanced their accuracy. Low’s (developed in Singapore) and Elley’s model (developed in New Zealand), outperformed the other models evaluated. These models can assist clinicians to improve the risk-stratification of diabetic patients for CKD and/or ESRD in the regions settings are similar to Thailand. Graphical abstract: [Figure not available: see fulltext.]
author2 School of Medicine and Public Health
author_facet School of Medicine and Public Health
Sigit Ari Saputro
Anuchate Pattanateepapon
Oraluck Pattanaprateep
Wichai Aekplakorn
Gareth J. McKay
John Attia
Ammarin Thakkinstian
format Article
author Sigit Ari Saputro
Anuchate Pattanateepapon
Oraluck Pattanaprateep
Wichai Aekplakorn
Gareth J. McKay
John Attia
Ammarin Thakkinstian
author_sort Sigit Ari Saputro
title External validation of prognostic models for chronic kidney disease among type 2 diabetes
title_short External validation of prognostic models for chronic kidney disease among type 2 diabetes
title_full External validation of prognostic models for chronic kidney disease among type 2 diabetes
title_fullStr External validation of prognostic models for chronic kidney disease among type 2 diabetes
title_full_unstemmed External validation of prognostic models for chronic kidney disease among type 2 diabetes
title_sort external validation of prognostic models for chronic kidney disease among type 2 diabetes
publishDate 2022
url https://repository.li.mahidol.ac.th/handle/123456789/74423
_version_ 1763488417532870656