Optimizing Link-Level Entanglement Generation in Quantum Networks with Unequal Link Lengths

Quantum internet offers a variety of applications that either enhance or surpass its classical counterpart. Quantum repeaters are imperative to a quantum network as they connect between two quantum nodes, and create quantum entanglement between two targeted nodes with entanglement swapping protocol...

全面介紹

Saved in:
書目詳細資料
Main Authors: Poramet Pathumsoot, Naphan Benchasattabuse, Ryosuke Satoh, Michal Hajdusek, Rodney Van Meter, Sujin Suwanna
其他作者: Keio University
格式: Conference or Workshop Item
出版: 2022
主題:
在線閱讀:https://repository.li.mahidol.ac.th/handle/123456789/76715
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Mahidol University
實物特徵
總結:Quantum internet offers a variety of applications that either enhance or surpass its classical counterpart. Quantum repeaters are imperative to a quantum network as they connect between two quantum nodes, and create quantum entanglement between two targeted nodes with entanglement swapping protocol which require resource from both connections. As a quantum state has a finite decoherent time, it is crucial that a connection protocol is performed efficiently and within suitable time interval, so that two end-To-end matter qubits are entangled. We simulate a second generation network of quantum repeaters, one that is capable of quantum error correction, to estimate the waiting time needed to establish connection between distant nodes. Simulations are performed for a linear chain of nodes with unequal path lengths, and loss rates. We find that asymmetry of path lengths contributes to the waiting time of physical qubits. By simply adjusting the photon generation rate from one of its nodes, the waiting time is reduced while the time to complete quantum state tomography remains unaffected. This simple adjustment can play important roles in compensating for distance asymmetry when a quantum repeater is not stationary.