Primaquine-induced Severe Hemolysis in the Absence of Concomitant Malaria: Effects on G6PD Activity and Renal Function

Primaquine prevents relapses of Plasmodium vivax malaria but can cause severe hemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The clinical and laboratory features of this outcome are usually confounded by the clinical and hemolytic effects of concomitant malaria. We d...

Full description

Saved in:
Bibliographic Details
Main Author: Douglas N.M.
Other Authors: Mahidol University
Format: Article
Published: 2023
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/81981
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:Primaquine prevents relapses of Plasmodium vivax malaria but can cause severe hemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The clinical and laboratory features of this outcome are usually confounded by the clinical and hemolytic effects of concomitant malaria. We describe a case of severe hemolysis occurring after a total dose of 2.04 mg/kg of primaquine used for prophylaxis in a young, G6PD-deficient (Kaiping variant), Australian man without malaria. During acute hemolysis, he had markedly elevated urinary beta-2-microglobulin, suggestive of renal tubular injury (a well-recognized complication of primaquine-induced hemolysis). He also had albuminuria and significantly increased excretion of glycocalyx metabolites, suggestive of glomerular glycocalyx degradation and injury. We show that regularly dosed paracetamol given for its putative renoprotective effect is safe in the context of severe oxidative hemolysis. Acute drug-induced hemolysis transiently increases G6PD activity. Cases such as this improve our understanding of primaquine-induced hemolysis and ultimately will help facilitate widespread safe and effective use of this critically important drug.