Ketorolac-Loaded PLGA-/PLA-Based Microparticles Stabilized by Hyaluronic Acid: Effects of Formulation Composition and Emulsification Technique on Particle Characteristics and Drug Release Behaviors

This study aimed to develop ketorolac microparticles stabilized by hyaluronic acid based on poly(lactide-co-glycolide) (PLGA), poly(lactide) (PLA), and their blend for further application in osteoarthritis. The polymer blend may provide tailored drug release and improved physicochemical characterist...

Full description

Saved in:
Bibliographic Details
Main Author: Wongrakpanich A.
Other Authors: Mahidol University
Format: Article
Published: 2023
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/81994
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
id th-mahidol.81994
record_format dspace
spelling th-mahidol.819942023-05-19T14:47:39Z Ketorolac-Loaded PLGA-/PLA-Based Microparticles Stabilized by Hyaluronic Acid: Effects of Formulation Composition and Emulsification Technique on Particle Characteristics and Drug Release Behaviors Wongrakpanich A. Mahidol University Materials Science This study aimed to develop ketorolac microparticles stabilized by hyaluronic acid based on poly(lactide-co-glycolide) (PLGA), poly(lactide) (PLA), and their blend for further application in osteoarthritis. The polymer blend may provide tailored drug release and improved physicochemical characteristics. The microparticles were prepared by water-in-oil-in-water (w/o/w) double emulsion solvent evaporation using two emulsification techniques, probe sonication (PS) and high-speed stirring (HSS), to obtain the microparticles in different size ranges. The results revealed that the polymer composition and emulsification technique influenced the ketorolac microparticle characteristics. The PS technique provided significantly at least 20 times smaller average size (1.3–2.2 µm) and broader size distribution (1.5–8.5) than HSS (45.5–67.4 µm and 1.0–1.4, respectively). The encapsulation efficiency was influenced by the polymer composition and the emulsification technique, especially in the PLA microparticles. The DSC and XRD results suggested that the drug was compatible with and molecularly dissolved in the polymer matrix. Furthermore, most of the drug molecules existed in an amorphous form, and some in any crystalline form. All of the microparticles had biphasic drug release composed of the burst release within the first 2 h and the sustained release over 35 days. The obtained microparticles showed promise for further use in the treatment of osteoarthritis. 2023-05-19T07:47:39Z 2023-05-19T07:47:39Z 2023-01-01 Article Polymers Vol.15 No.2 (2023) 10.3390/polym15020266 20734360 2-s2.0-85146691975 https://repository.li.mahidol.ac.th/handle/123456789/81994 SCOPUS
institution Mahidol University
building Mahidol University Library
continent Asia
country Thailand
Thailand
content_provider Mahidol University Library
collection Mahidol University Institutional Repository
topic Materials Science
spellingShingle Materials Science
Wongrakpanich A.
Ketorolac-Loaded PLGA-/PLA-Based Microparticles Stabilized by Hyaluronic Acid: Effects of Formulation Composition and Emulsification Technique on Particle Characteristics and Drug Release Behaviors
description This study aimed to develop ketorolac microparticles stabilized by hyaluronic acid based on poly(lactide-co-glycolide) (PLGA), poly(lactide) (PLA), and their blend for further application in osteoarthritis. The polymer blend may provide tailored drug release and improved physicochemical characteristics. The microparticles were prepared by water-in-oil-in-water (w/o/w) double emulsion solvent evaporation using two emulsification techniques, probe sonication (PS) and high-speed stirring (HSS), to obtain the microparticles in different size ranges. The results revealed that the polymer composition and emulsification technique influenced the ketorolac microparticle characteristics. The PS technique provided significantly at least 20 times smaller average size (1.3–2.2 µm) and broader size distribution (1.5–8.5) than HSS (45.5–67.4 µm and 1.0–1.4, respectively). The encapsulation efficiency was influenced by the polymer composition and the emulsification technique, especially in the PLA microparticles. The DSC and XRD results suggested that the drug was compatible with and molecularly dissolved in the polymer matrix. Furthermore, most of the drug molecules existed in an amorphous form, and some in any crystalline form. All of the microparticles had biphasic drug release composed of the burst release within the first 2 h and the sustained release over 35 days. The obtained microparticles showed promise for further use in the treatment of osteoarthritis.
author2 Mahidol University
author_facet Mahidol University
Wongrakpanich A.
format Article
author Wongrakpanich A.
author_sort Wongrakpanich A.
title Ketorolac-Loaded PLGA-/PLA-Based Microparticles Stabilized by Hyaluronic Acid: Effects of Formulation Composition and Emulsification Technique on Particle Characteristics and Drug Release Behaviors
title_short Ketorolac-Loaded PLGA-/PLA-Based Microparticles Stabilized by Hyaluronic Acid: Effects of Formulation Composition and Emulsification Technique on Particle Characteristics and Drug Release Behaviors
title_full Ketorolac-Loaded PLGA-/PLA-Based Microparticles Stabilized by Hyaluronic Acid: Effects of Formulation Composition and Emulsification Technique on Particle Characteristics and Drug Release Behaviors
title_fullStr Ketorolac-Loaded PLGA-/PLA-Based Microparticles Stabilized by Hyaluronic Acid: Effects of Formulation Composition and Emulsification Technique on Particle Characteristics and Drug Release Behaviors
title_full_unstemmed Ketorolac-Loaded PLGA-/PLA-Based Microparticles Stabilized by Hyaluronic Acid: Effects of Formulation Composition and Emulsification Technique on Particle Characteristics and Drug Release Behaviors
title_sort ketorolac-loaded plga-/pla-based microparticles stabilized by hyaluronic acid: effects of formulation composition and emulsification technique on particle characteristics and drug release behaviors
publishDate 2023
url https://repository.li.mahidol.ac.th/handle/123456789/81994
_version_ 1781416085989359616