Alternative Approach to Achieve a Solution of Derangement Problems by Dynamic Programming

Derangement is one well-known problem in the filed of probability theory. An instance of a derangement problem contains a finite collection C of n paired objects, C = {(x1, y1), …, (xn, yn)}. The derangement problem asks how many ways to generate a new collection C′ ≠ C such that for each (xi, yj )...

Full description

Saved in:
Bibliographic Details
Main Author: Patanasakpinyo T.
Other Authors: Mahidol University
Format: Conference or Workshop Item
Published: 2023
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/82651
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:Derangement is one well-known problem in the filed of probability theory. An instance of a derangement problem contains a finite collection C of n paired objects, C = {(x1, y1), …, (xn, yn)}. The derangement problem asks how many ways to generate a new collection C′ ≠ C such that for each (xi, yj ) ∈ C′, i ≠ j. We propose an efficient dynamic programming algorithm that divides an instance of the derangement problem into several subproblems. During a recursive process of unrolling a subproblem, there exists a repeated procedure that allows us to make a use of a subsolution that has already been computed. We present the methodology to formulate a concept of this subproblem as well as parts of designing and analyzing an efficiency of the proposed algorithm.