Thioredoxin Reductase-1 as a Potential Biomarker in Fibroblast-Associated HCT116 Cancer Cell Progression and Dissemination in a Zebrafish Model

The tumor microenvironment, especially that of fibroblasts, strongly promotes colorectal cancer (CRC) progression. Progressive cancers usually accumulate high reactive oxygen species (ROS), leading to oxidative stress. The stress relates to the expression of thioredoxin reductase-1 (TrxR-1), which i...

Full description

Saved in:
Bibliographic Details
Main Author: Muangthong T.
Other Authors: Mahidol University
Format: Article
Published: 2023
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/82730
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
id th-mahidol.82730
record_format dspace
spelling th-mahidol.827302023-05-24T00:19:52Z Thioredoxin Reductase-1 as a Potential Biomarker in Fibroblast-Associated HCT116 Cancer Cell Progression and Dissemination in a Zebrafish Model Muangthong T. Mahidol University Medicine The tumor microenvironment, especially that of fibroblasts, strongly promotes colorectal cancer (CRC) progression. Progressive cancers usually accumulate high reactive oxygen species (ROS), leading to oxidative stress. The stress relates to the expression of thioredoxin reductase-1 (TrxR-1), which is an oxidative stress sensitivity molecule. This study aimed to investigate TrxR-1 expression as an indication of colon-fibroblast-inducing colorectal cancer progression and metastasis. We found that the high proliferative fibroblast-cultured media (FCM) contained pro-inflammatory cytokines that have a high ability to influence HCT116 and CRC cell progression, when compared with complete media (CM) as a control in terms of growth (CM = 100.00%, FCM = 165.96%), migration (CM = 32.22%, FCM = 83.07%), invasion (CM = 130 cells/field, FCM = 449 cells/field), and EMT transformation while decreasing E-cadherin expression (CM = 1.00, FCM = 0.69) and shape factor (CM = 0.94, FCM = 0.61). In addition, the overexpression of TrxR-1 is associated with cellular oxidant enchantment in FCM-treated cells. A dot plot analysis showed a strong relation between the EMT process and the overexpression of TrxR-1 in FCM-treated cells (CM = 13/100 cells, FCM = 45/100 cells). The cancer transplantation of the adult zebrafish model illustrated a significantly higher number of microtumors in FCM-treated cells (CM = 4.33 ± 1.51/HPF, FCM = 25.00 ± 13.18/HPF) disseminated in the intraperitoneal cavity with TrxR-1 positive cells. The overexpression of TrxR-1 indicated fibroblast-associated CRC progression in HCT116 cells and the zebrafish model. Therefore, TrxR-1 could be applied as a novel biomarker for colorectal cancer progression and prognostic evaluation. 2023-05-23T17:19:52Z 2023-05-23T17:19:52Z 2023-01-01 Article Cancers Vol.15 No.1 (2023) 10.3390/cancers15010056 20726694 2-s2.0-85146044713 https://repository.li.mahidol.ac.th/handle/123456789/82730 SCOPUS
institution Mahidol University
building Mahidol University Library
continent Asia
country Thailand
Thailand
content_provider Mahidol University Library
collection Mahidol University Institutional Repository
topic Medicine
spellingShingle Medicine
Muangthong T.
Thioredoxin Reductase-1 as a Potential Biomarker in Fibroblast-Associated HCT116 Cancer Cell Progression and Dissemination in a Zebrafish Model
description The tumor microenvironment, especially that of fibroblasts, strongly promotes colorectal cancer (CRC) progression. Progressive cancers usually accumulate high reactive oxygen species (ROS), leading to oxidative stress. The stress relates to the expression of thioredoxin reductase-1 (TrxR-1), which is an oxidative stress sensitivity molecule. This study aimed to investigate TrxR-1 expression as an indication of colon-fibroblast-inducing colorectal cancer progression and metastasis. We found that the high proliferative fibroblast-cultured media (FCM) contained pro-inflammatory cytokines that have a high ability to influence HCT116 and CRC cell progression, when compared with complete media (CM) as a control in terms of growth (CM = 100.00%, FCM = 165.96%), migration (CM = 32.22%, FCM = 83.07%), invasion (CM = 130 cells/field, FCM = 449 cells/field), and EMT transformation while decreasing E-cadherin expression (CM = 1.00, FCM = 0.69) and shape factor (CM = 0.94, FCM = 0.61). In addition, the overexpression of TrxR-1 is associated with cellular oxidant enchantment in FCM-treated cells. A dot plot analysis showed a strong relation between the EMT process and the overexpression of TrxR-1 in FCM-treated cells (CM = 13/100 cells, FCM = 45/100 cells). The cancer transplantation of the adult zebrafish model illustrated a significantly higher number of microtumors in FCM-treated cells (CM = 4.33 ± 1.51/HPF, FCM = 25.00 ± 13.18/HPF) disseminated in the intraperitoneal cavity with TrxR-1 positive cells. The overexpression of TrxR-1 indicated fibroblast-associated CRC progression in HCT116 cells and the zebrafish model. Therefore, TrxR-1 could be applied as a novel biomarker for colorectal cancer progression and prognostic evaluation.
author2 Mahidol University
author_facet Mahidol University
Muangthong T.
format Article
author Muangthong T.
author_sort Muangthong T.
title Thioredoxin Reductase-1 as a Potential Biomarker in Fibroblast-Associated HCT116 Cancer Cell Progression and Dissemination in a Zebrafish Model
title_short Thioredoxin Reductase-1 as a Potential Biomarker in Fibroblast-Associated HCT116 Cancer Cell Progression and Dissemination in a Zebrafish Model
title_full Thioredoxin Reductase-1 as a Potential Biomarker in Fibroblast-Associated HCT116 Cancer Cell Progression and Dissemination in a Zebrafish Model
title_fullStr Thioredoxin Reductase-1 as a Potential Biomarker in Fibroblast-Associated HCT116 Cancer Cell Progression and Dissemination in a Zebrafish Model
title_full_unstemmed Thioredoxin Reductase-1 as a Potential Biomarker in Fibroblast-Associated HCT116 Cancer Cell Progression and Dissemination in a Zebrafish Model
title_sort thioredoxin reductase-1 as a potential biomarker in fibroblast-associated hct116 cancer cell progression and dissemination in a zebrafish model
publishDate 2023
url https://repository.li.mahidol.ac.th/handle/123456789/82730
_version_ 1781413921647755264