Encapsulation of Mesona chinensis Benth Extract in Alginate Beads Enhances the Stability and Antioxidant Activity of Polyphenols under Simulated Gastrointestinal Digestion
The aim of this study was to investigate the stability and antioxidant activity of the polyphenols from Mesona chinensis Benth extract (MCE) and its alginate-based encapsulation by extrusion technique during simulated gastrointestinal digestion. The encapsulation efficacy ranged from 41.1 ± 4.7 to 5...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2023
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/83169 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
id |
th-mahidol.83169 |
---|---|
record_format |
dspace |
spelling |
th-mahidol.831692023-06-18T23:35:21Z Encapsulation of Mesona chinensis Benth Extract in Alginate Beads Enhances the Stability and Antioxidant Activity of Polyphenols under Simulated Gastrointestinal Digestion Wongverawattanakul C. Mahidol University Agricultural and Biological Sciences The aim of this study was to investigate the stability and antioxidant activity of the polyphenols from Mesona chinensis Benth extract (MCE) and its alginate-based encapsulation by extrusion technique during simulated gastrointestinal digestion. The encapsulation efficacy ranged from 41.1 ± 4.7 to 56.7 ± 3.4% with different concentrations of MCE (50–75% v/v), sodium alginate (1.2–1.8% w/v), and CaCl2 solution (3–5% w/v). The optimal condition for MCE-loaded alginate beads (MCB) was composed of 75% MCE, 1.5% alginate, and 3% CaCl2 solution, which provided the highest encapsulation efficiency with a spherical structure and a mean particle diameter of 1516.67 ± 40.96 μm. Fourier transform infrared spectroscopy (FT-IR) reported no chemical interaction between alginate and MCE. The release of total phenolic content (TPC) was only 8.9% after placing MCB in water for 4 h. After simulated digestion, changes in TPC and ferric reducing antioxidant power (FRAP) of MCE significantly decreased by 25.0% and 29.7%, respectively. Interestingly, the incorporation of MCB significantly increased TPC and FRAP in the digesta compared to those of MCE during gastrointestinal tract conditions. The findings suggest that the encapsulation of MCE with alginate as a carrier helps to improve the bioaccessibility and biological activity of M. chinensis polyphenols. 2023-06-18T16:35:21Z 2023-06-18T16:35:21Z 2022-08-01 Article Foods Vol.11 No.15 (2022) 10.3390/foods11152378 23048158 2-s2.0-85136997701 https://repository.li.mahidol.ac.th/handle/123456789/83169 SCOPUS |
institution |
Mahidol University |
building |
Mahidol University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Mahidol University Library |
collection |
Mahidol University Institutional Repository |
topic |
Agricultural and Biological Sciences |
spellingShingle |
Agricultural and Biological Sciences Wongverawattanakul C. Encapsulation of Mesona chinensis Benth Extract in Alginate Beads Enhances the Stability and Antioxidant Activity of Polyphenols under Simulated Gastrointestinal Digestion |
description |
The aim of this study was to investigate the stability and antioxidant activity of the polyphenols from Mesona chinensis Benth extract (MCE) and its alginate-based encapsulation by extrusion technique during simulated gastrointestinal digestion. The encapsulation efficacy ranged from 41.1 ± 4.7 to 56.7 ± 3.4% with different concentrations of MCE (50–75% v/v), sodium alginate (1.2–1.8% w/v), and CaCl2 solution (3–5% w/v). The optimal condition for MCE-loaded alginate beads (MCB) was composed of 75% MCE, 1.5% alginate, and 3% CaCl2 solution, which provided the highest encapsulation efficiency with a spherical structure and a mean particle diameter of 1516.67 ± 40.96 μm. Fourier transform infrared spectroscopy (FT-IR) reported no chemical interaction between alginate and MCE. The release of total phenolic content (TPC) was only 8.9% after placing MCB in water for 4 h. After simulated digestion, changes in TPC and ferric reducing antioxidant power (FRAP) of MCE significantly decreased by 25.0% and 29.7%, respectively. Interestingly, the incorporation of MCB significantly increased TPC and FRAP in the digesta compared to those of MCE during gastrointestinal tract conditions. The findings suggest that the encapsulation of MCE with alginate as a carrier helps to improve the bioaccessibility and biological activity of M. chinensis polyphenols. |
author2 |
Mahidol University |
author_facet |
Mahidol University Wongverawattanakul C. |
format |
Article |
author |
Wongverawattanakul C. |
author_sort |
Wongverawattanakul C. |
title |
Encapsulation of Mesona chinensis Benth Extract in Alginate Beads Enhances the Stability and Antioxidant Activity of Polyphenols under Simulated Gastrointestinal Digestion |
title_short |
Encapsulation of Mesona chinensis Benth Extract in Alginate Beads Enhances the Stability and Antioxidant Activity of Polyphenols under Simulated Gastrointestinal Digestion |
title_full |
Encapsulation of Mesona chinensis Benth Extract in Alginate Beads Enhances the Stability and Antioxidant Activity of Polyphenols under Simulated Gastrointestinal Digestion |
title_fullStr |
Encapsulation of Mesona chinensis Benth Extract in Alginate Beads Enhances the Stability and Antioxidant Activity of Polyphenols under Simulated Gastrointestinal Digestion |
title_full_unstemmed |
Encapsulation of Mesona chinensis Benth Extract in Alginate Beads Enhances the Stability and Antioxidant Activity of Polyphenols under Simulated Gastrointestinal Digestion |
title_sort |
encapsulation of mesona chinensis benth extract in alginate beads enhances the stability and antioxidant activity of polyphenols under simulated gastrointestinal digestion |
publishDate |
2023 |
url |
https://repository.li.mahidol.ac.th/handle/123456789/83169 |
_version_ |
1781415015483441152 |