Biomarker-Determined Nonylphenol Exposure and Associated Risks in Children of Thailand, Indonesia, and Saudi Arabia

Nonylphenol (NP) is an endocrine disruptor and environmental contaminant. Yet, data on individual body burdens and potential health risks in humans, especially among children, are scarce. We analyzed two specific urinary NP metabolites, hydroxy-NP (OH-NP) and oxo-NP. In contrast to parent NP, OH-NP...

Full description

Saved in:
Bibliographic Details
Main Author: Ringbeck B.
Other Authors: Mahidol University
Format: Article
Published: 2023
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/84180
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:Nonylphenol (NP) is an endocrine disruptor and environmental contaminant. Yet, data on individual body burdens and potential health risks in humans, especially among children, are scarce. We analyzed two specific urinary NP metabolites, hydroxy-NP (OH-NP) and oxo-NP. In contrast to parent NP, OH-NP has a much higher urinary excretion fraction (Fue), and both are insusceptible to external contamination. We investigated spot urine samples from school children of Thailand (n = 104), Indonesia (n = 89), and Saudi Arabia (n = 108) and could quantify OH-NP in 100% of Indonesian and Saudi children (median concentrations: 8.12 and 8.57 μg/L) and in 76% of Thai children (1.07 μg/L). Median oxo-NP concentrations were 0.95, 1.10, and <0.25 μg/L, respectively, in line with its lower Fue. Median daily NP intakes (DIs), back-calculated from urinary OH-NP concentrations, were significantly higher in Indonesia and Saudi Arabia [0.47 and 0.36 μg/(kg bw·d), respectively] than in Thailand [0.06 μg/(kg bw·d)]. Maximum DIs were close to the preliminary tolerable DI of 5 μg/(kg bw·d) from the Danish Environmental Protection Agency. Dominant sources of exposure or relevant exposure pathways could not be readily identified by questionnaire analyses and also potentially varied by region. The novel biomarkers provide long-needed support to the quantitative exposure and risk assessment of NP.