Comparing Four Machine Learning Algorithms for Land Cover Classification in Gold Mining: A Case Study of Kyaukpahto Gold Mine, Northern Myanmar

Numerous studies have been undertaken to determine the optimal land use/cover classification algorithm. However, there have not been many studies that have compared and evaluated the performance of maximum likelihood (ML), random forest (RF), support vector machine (SVM), and classification and regr...

Full description

Saved in:
Bibliographic Details
Main Author: Oo T.K.
Other Authors: Mahidol University
Format: Article
Published: 2023
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/84260
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:Numerous studies have been undertaken to determine the optimal land use/cover classification algorithm. However, there have not been many studies that have compared and evaluated the performance of maximum likelihood (ML), random forest (RF), support vector machine (SVM), and classification and regression trees (CART) using ASTER imagery, especially in a mining district. Therefore, this study aims to investigate land use/cover (LULC) change over three decades (1990–2020), comparing the performance of the ML, RF, SVM, and CART machine learning algorithms. The Landsat and ASTER data were retrieved using Google Earth Engine (GEE). Traditional ML classification was performed on ArcGIS 10.2 software while RF, SVM, and CART classification were undertaken on GEE. Then, thematic accuracy assessments were conducted for the four algorithms and their performances were compared. The results showed that the largest changes in area occurred in forest cover that decreased from 37.8 to 27.3 km2 during the three decades. The remarkable expansion of gold mining occurred during 2005–2010 with the increases of 1.6%. The mining land rose by 2.9% during the study period whereas agricultural land increased significantly by 10.7% between 1990 and 2020. When comparing the four algorithms, the RF algorithm gives the highest accuracy with an overall accuracy of 95.85% while SVM follows RF with 91.69%. This study proved that RF is the best choice for optimal land use/cover classification, particularly in the mining district.