Inhibition of LPS-Induced Microglial Activation by the Ethyl Acetate Extract of Pueraria mirifica
Microglial activation has been found to play a crucial role in various neurological disorders. Proinflammatory substances overproduced by activated microglia, such as cytokines, chemokines, reactive oxygen species, and nitric oxide (NO), can result in neuroinflammation that further exacerbates the c...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2023
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/84675 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
id |
th-mahidol.84675 |
---|---|
record_format |
dspace |
spelling |
th-mahidol.846752023-06-19T00:14:54Z Inhibition of LPS-Induced Microglial Activation by the Ethyl Acetate Extract of Pueraria mirifica Jantaratnotai N. Mahidol University Environmental Science Microglial activation has been found to play a crucial role in various neurological disorders. Proinflammatory substances overproduced by activated microglia, such as cytokines, chemokines, reactive oxygen species, and nitric oxide (NO), can result in neuroinflammation that further exacerbates the course of the diseases. This study aimed to explore the anti-inflammatory effect of the ethyl acetate extract of Pueraria mirifica on microglial activation. Lipopolysaccharide (LPS)-induced inflammation was used as a model to investigate the effects of P. mirifica on HAPI (highly aggressive proliferating immortalized), a rat microglial cell line. Administration of ethyl acetate extract from the tuberous roots of P. mirifica to HAPI cells dose-dependently reduced NO production and iNOS expression induced by LPS. Attenuation of IRF-1 (interferon regulatory factor-1) induction, one of the transcription factors governing iNOS expression, suggested that the inhibitory effect on NO production by the plant extract was at least partially mediated through this transcription factor. In addition, LPS-stimulated mRNA expression of MCP-1 (monocyte chemoattractant protein-1), IL-6 (interleukin-6), and TNF-α (tumor necrosis factor-α) was also suppressed with P. mirifica extract pretreatment. This study indicates that the ethyl acetate extract of P. mirifica could potentially serve as an anti-inflammatory mediator and may be useful in relieving the severity of neurological diseases where microglia play a role. 2023-06-18T17:14:54Z 2023-06-18T17:14:54Z 2022-10-01 Article International Journal of Environmental Research and Public Health Vol.19 No.19 (2022) 10.3390/ijerph191912920 16604601 16617827 36232220 2-s2.0-85139748435 https://repository.li.mahidol.ac.th/handle/123456789/84675 SCOPUS |
institution |
Mahidol University |
building |
Mahidol University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Mahidol University Library |
collection |
Mahidol University Institutional Repository |
topic |
Environmental Science |
spellingShingle |
Environmental Science Jantaratnotai N. Inhibition of LPS-Induced Microglial Activation by the Ethyl Acetate Extract of Pueraria mirifica |
description |
Microglial activation has been found to play a crucial role in various neurological disorders. Proinflammatory substances overproduced by activated microglia, such as cytokines, chemokines, reactive oxygen species, and nitric oxide (NO), can result in neuroinflammation that further exacerbates the course of the diseases. This study aimed to explore the anti-inflammatory effect of the ethyl acetate extract of Pueraria mirifica on microglial activation. Lipopolysaccharide (LPS)-induced inflammation was used as a model to investigate the effects of P. mirifica on HAPI (highly aggressive proliferating immortalized), a rat microglial cell line. Administration of ethyl acetate extract from the tuberous roots of P. mirifica to HAPI cells dose-dependently reduced NO production and iNOS expression induced by LPS. Attenuation of IRF-1 (interferon regulatory factor-1) induction, one of the transcription factors governing iNOS expression, suggested that the inhibitory effect on NO production by the plant extract was at least partially mediated through this transcription factor. In addition, LPS-stimulated mRNA expression of MCP-1 (monocyte chemoattractant protein-1), IL-6 (interleukin-6), and TNF-α (tumor necrosis factor-α) was also suppressed with P. mirifica extract pretreatment. This study indicates that the ethyl acetate extract of P. mirifica could potentially serve as an anti-inflammatory mediator and may be useful in relieving the severity of neurological diseases where microglia play a role. |
author2 |
Mahidol University |
author_facet |
Mahidol University Jantaratnotai N. |
format |
Article |
author |
Jantaratnotai N. |
author_sort |
Jantaratnotai N. |
title |
Inhibition of LPS-Induced Microglial Activation by the Ethyl Acetate Extract of Pueraria mirifica |
title_short |
Inhibition of LPS-Induced Microglial Activation by the Ethyl Acetate Extract of Pueraria mirifica |
title_full |
Inhibition of LPS-Induced Microglial Activation by the Ethyl Acetate Extract of Pueraria mirifica |
title_fullStr |
Inhibition of LPS-Induced Microglial Activation by the Ethyl Acetate Extract of Pueraria mirifica |
title_full_unstemmed |
Inhibition of LPS-Induced Microglial Activation by the Ethyl Acetate Extract of Pueraria mirifica |
title_sort |
inhibition of lps-induced microglial activation by the ethyl acetate extract of pueraria mirifica |
publishDate |
2023 |
url |
https://repository.li.mahidol.ac.th/handle/123456789/84675 |
_version_ |
1781415107567288320 |