Newly diagnosed neuromyelitis optica spectrum disorders following vaccination: Case report and systematic review
Introduction: The pathogenesis of neuromyelitis optica spectrum disorder (NMOSD) has been vigorously illustrated, but triggers of the disease remain unclear. Viral infection and vaccination have been observed to precede certain cases of NMOSD. Amidst the Coronavirus disease 2019 (COVID-19) pandemic,...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2023
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/86177 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
Summary: | Introduction: The pathogenesis of neuromyelitis optica spectrum disorder (NMOSD) has been vigorously illustrated, but triggers of the disease remain unclear. Viral infection and vaccination have been observed to precede certain cases of NMOSD. Amidst the Coronavirus disease 2019 (COVID-19) pandemic, mass vaccination takes place across the globe. We report two cases of newly diagnosed NMOSD following COVID-19 vaccination and systematically review previous reports. Method: Searching of Ovid MEDLINE and EMBASE databases was done using predefined search terms related to NMOSD and vaccination. Duplicates were removed. Newly diagnosed NMOSD cases fulfilling the 2015 International Panel for NMO Diagnosis criteria with symptoms presenting between 2–30 days after vaccination were included. Data on age, sex, comorbidity, vaccine name, type, and dose number, duration from vaccination to symptom onset, clinical phenotype(s), MRI findings, CSF profiles, severity of attack, initial and maintenance treatment, number of relapses after vaccination, and clinical outcomes were extracted using a standardized table and compared. Result: Ten cases of postvaccination NMOSD were identified. Patients aged between 15–46 years old. Nine patients (90%) presented with transverse myelitis and 3 (30%) with optic neuritis. The mean duration from vaccination to clinical onset was 8.2 days (median 9 days). Five patients (50%) tested positive for aquaporin 4 (AQP4) antibody. One patient had a family history of NMOSD. Three-fourths of AQP4-IgG seropositive patients with myelopathy had short transverse myelitis. The reported vaccines included CoronaVac, ChAdOx1 nCoV-19, yellow fever, quadrivalent influenza, H1N1 influenza, quadrivalent human papillomavirus, Japanese encephalitis, rabies, and recombinant hepatitis B virus together with tetanus-diphtheria-pertussis vaccines. All patients received high-dose steroids for initial treatment and 2 received additional therapeutic plasma exchange. Maintenance therapy was given in 4 patients. Five patients (50%) experienced no subsequent relapses within the follow-up period ranging between 3–34 months. Almost all patients returned to baseline functional status. Discussion: The temporal relationship between vaccination and onset of symptoms suggests that vaccine might be a trigger of NMOSD. Genetic predisposition could be a risk factor for postvaccination NMOSD as there are evidences of family history and presence of an associated HLA allele. The prevalence of short-segment transverse myelitis seems to be higher than in typical cases of NMOSD, but the natural history is otherwise similar. All patients received acute treatment with high-dose corticosteroids, most with excellent response. Long-term immunomodulation therapy should be initiated for relapse prevention. Limitations of this study are lack of some relevant data, precision of temporal relationship, and the small number of reports. Conclusion: Postvaccination NMOSD is a rare condition that can occur with various types of vaccines. The short temporal relationship between vaccination and onset of NMOSD and the history of NMOSD in one patient's sibling indicate that vaccine might be a trigger for genetically predisposed individuals. |
---|