Chimeric MrNV-GE11-VLPs serve as a nano-container to deliver Doxorubicin into cancer cells
We have reported that virus-like particle from shrimp virus, MrNV-VLP, effectively encapsulates and delivers plasmid DNA and dsRNA into Sf9 insect cells and shrimp tissues. Additionally, modifying VLP with GE-11 peptide extension on the surface (so called, E-MrNV-GE11-VLP) allows them to interact sp...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2023
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/86453 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
Summary: | We have reported that virus-like particle from shrimp virus, MrNV-VLP, effectively encapsulates and delivers plasmid DNA and dsRNA into Sf9 insect cells and shrimp tissues. Additionally, modifying VLP with GE-11 peptide extension on the surface (so called, E-MrNV-GE11-VLP) allows them to interact specifically with the EGFR-positive SW480 cancer cells. This work extrapolated the use of E-MrNV-GE11-VLP to encapsulate and deliver doxorubicin (DOX) towards SW480 cells. The results showed that DOX was passively loaded into VLPs in a molar ratio of >200 DOX/VLP equivalent to a loading efficiency of 3%. Specific targeting of E-MrNV-GE11-VLP + DOX and its anti-cancer effect towards SW480 was more pronounced than that of N-MrNV-VLP + DOX, suggesting an interaction and internalization of E-MrNV-GE11-VLP through surface EGFR. This claim was also supported by a lower DOX delivery into MCF7 than SW480 cells. Finally, the cell cytotoxicity assay showed that E-MrNV-GE11-VLP + DOX significantly decreased cell viability in SW480 cells more than that by N-MrNV-VLP + DOX (P<0.05), while its cytotoxicity effect on MFC7 cells was much lower than on SW480 cells. This study provides insights into how to develop target-specific drug delivery for carrying therapeutic agents towards specific tumor cells. |
---|