Photocatalytic Activity of TiO<inf>2</inf>/g-C<inf>3</inf>N<inf>4</inf> Nanocomposites for Removal of Monochlorophenols from Water
This research employed g-C3N4 nanosheets in the hydrothermal synthesis of TiO2/g-C3N4 hybrid photocatalysts. The TiO2/g-C3N4 heterojunctions, well-dispersed TiO2 nanoparticles on the g-C3N4 nanosheets, are effective photocatalysts for the degradation of monochlorophenols (MCPs: 2-CP, 3-CP, and 4-CP)...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2023
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/87127 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
id |
th-mahidol.87127 |
---|---|
record_format |
dspace |
spelling |
th-mahidol.871272023-06-20T11:45:19Z Photocatalytic Activity of TiO<inf>2</inf>/g-C<inf>3</inf>N<inf>4</inf> Nanocomposites for Removal of Monochlorophenols from Water Kobkeatthawin T. Mahidol University Chemical Engineering This research employed g-C3N4 nanosheets in the hydrothermal synthesis of TiO2/g-C3N4 hybrid photocatalysts. The TiO2/g-C3N4 heterojunctions, well-dispersed TiO2 nanoparticles on the g-C3N4 nanosheets, are effective photocatalysts for the degradation of monochlorophenols (MCPs: 2-CP, 3-CP, and 4-CP) which are prominent water contaminants. The removal efficiency of 2-CP and 4-CP reached 87% and 64%, respectively, after treatment of 25 ppm CP solutions with the photocatalyst (40TiO2/g-C3N4, 1 g/L) and irradiation with UV–Vis light. Treatment of CP solutions with g-C3N4 nanosheets or TiO2 alone in conjunction with irradiation gave removal efficiencies lower than 50%, which suggests the two act synergically to enhance the photocatalytic activity of the 40TiO2/g-C3N4 nanocomposite. Superoxide and hydroxyl radicals are key active species produced during CP photodegradation. In addition, the observed nitrogen and Ti3+ defects and oxygen vacancies in the TiO2/g-C3N4 nanocomposites may improve the light-harvesting ability of the composite and assist preventing rapid electron-hole recombination on the surface, enhancing the photocatalytic performance. In addition, interfacial interactions between the MCPs (low polarity) and thermally exfoliated carbon nitride in the TiO2/g-C3N4 nanocomposites may also enhance MCP degradation. 2023-06-20T04:45:19Z 2023-06-20T04:45:19Z 2022-08-01 Article Nanomaterials Vol.12 No.16 (2022) 10.3390/nano12162852 20794991 2-s2.0-85137385197 https://repository.li.mahidol.ac.th/handle/123456789/87127 SCOPUS |
institution |
Mahidol University |
building |
Mahidol University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Mahidol University Library |
collection |
Mahidol University Institutional Repository |
topic |
Chemical Engineering |
spellingShingle |
Chemical Engineering Kobkeatthawin T. Photocatalytic Activity of TiO<inf>2</inf>/g-C<inf>3</inf>N<inf>4</inf> Nanocomposites for Removal of Monochlorophenols from Water |
description |
This research employed g-C3N4 nanosheets in the hydrothermal synthesis of TiO2/g-C3N4 hybrid photocatalysts. The TiO2/g-C3N4 heterojunctions, well-dispersed TiO2 nanoparticles on the g-C3N4 nanosheets, are effective photocatalysts for the degradation of monochlorophenols (MCPs: 2-CP, 3-CP, and 4-CP) which are prominent water contaminants. The removal efficiency of 2-CP and 4-CP reached 87% and 64%, respectively, after treatment of 25 ppm CP solutions with the photocatalyst (40TiO2/g-C3N4, 1 g/L) and irradiation with UV–Vis light. Treatment of CP solutions with g-C3N4 nanosheets or TiO2 alone in conjunction with irradiation gave removal efficiencies lower than 50%, which suggests the two act synergically to enhance the photocatalytic activity of the 40TiO2/g-C3N4 nanocomposite. Superoxide and hydroxyl radicals are key active species produced during CP photodegradation. In addition, the observed nitrogen and Ti3+ defects and oxygen vacancies in the TiO2/g-C3N4 nanocomposites may improve the light-harvesting ability of the composite and assist preventing rapid electron-hole recombination on the surface, enhancing the photocatalytic performance. In addition, interfacial interactions between the MCPs (low polarity) and thermally exfoliated carbon nitride in the TiO2/g-C3N4 nanocomposites may also enhance MCP degradation. |
author2 |
Mahidol University |
author_facet |
Mahidol University Kobkeatthawin T. |
format |
Article |
author |
Kobkeatthawin T. |
author_sort |
Kobkeatthawin T. |
title |
Photocatalytic Activity of TiO<inf>2</inf>/g-C<inf>3</inf>N<inf>4</inf> Nanocomposites for Removal of Monochlorophenols from Water |
title_short |
Photocatalytic Activity of TiO<inf>2</inf>/g-C<inf>3</inf>N<inf>4</inf> Nanocomposites for Removal of Monochlorophenols from Water |
title_full |
Photocatalytic Activity of TiO<inf>2</inf>/g-C<inf>3</inf>N<inf>4</inf> Nanocomposites for Removal of Monochlorophenols from Water |
title_fullStr |
Photocatalytic Activity of TiO<inf>2</inf>/g-C<inf>3</inf>N<inf>4</inf> Nanocomposites for Removal of Monochlorophenols from Water |
title_full_unstemmed |
Photocatalytic Activity of TiO<inf>2</inf>/g-C<inf>3</inf>N<inf>4</inf> Nanocomposites for Removal of Monochlorophenols from Water |
title_sort |
photocatalytic activity of tio<inf>2</inf>/g-c<inf>3</inf>n<inf>4</inf> nanocomposites for removal of monochlorophenols from water |
publishDate |
2023 |
url |
https://repository.li.mahidol.ac.th/handle/123456789/87127 |
_version_ |
1781416731475968000 |