Cytochrome P450 2D6 (CYP2D6) and glucose-6-phosphate dehydrogenase (G6PD) genetic variations in Thai vivax malaria patients: Implications for 8-aminoquinoline radical cure

Background Primaquine and tafenoquine are the only licensed drugs that effectively kill the hypnozoite stage and are used to prevent Plasmodium vivax malaria relapse. However, both primaquine and tafenoquine can cause acute hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient people with...

Full description

Saved in:
Bibliographic Details
Main Author: Chamchoy K.
Other Authors: Mahidol University
Format: Article
Published: 2023
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/87157
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
id th-mahidol.87157
record_format dspace
spelling th-mahidol.871572023-06-20T12:20:40Z Cytochrome P450 2D6 (CYP2D6) and glucose-6-phosphate dehydrogenase (G6PD) genetic variations in Thai vivax malaria patients: Implications for 8-aminoquinoline radical cure Chamchoy K. Mahidol University Medicine Background Primaquine and tafenoquine are the only licensed drugs that effectively kill the hypnozoite stage and are used to prevent Plasmodium vivax malaria relapse. However, both primaquine and tafenoquine can cause acute hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient people with varying degrees of severity depending on G6PD variants. Additionally, primaquine efficacy against malaria parasites was decreased in individuals with impaired cytochrome P450 2D6 (CYP2D6) activity due to genetic polymorphisms. This study aimed to characterize G6PD and CYP2D6 genetic variations in vivax malaria patients from Yala province, a malaria-endemic area along the Thai–Malaysian border, and determine the biochemical properties of identified G6PD variants. Methodology/Principle findings Multiplexed high-resolution melting assay and DNA sequencing detected five G6PD variants, including G6PD Kaiping, G6PD Vanua Lava, G6PD Coimbra, G6PD Mahidol, and G6PD Kerala-Kalyan. Biochemical and structural characterization revealed that G6PD Coimbra markedly reduced catalytic activity and structural stability, indicating a high susceptibility to drug-induced hemolysis. While Kerala-Kalyan had minor effects, it is possible to develop mild adverse effects when receiving radical treatment. CYP2D6 genotyping was performed using long-range PCR and DNA sequencing, and the phenotypes were predicted using the combination of allelic variants. Decreased and no-function alleles were detected at frequencies of 53.4% and 14.2%, respectively. The most common alleles were CYP2D6*36+*10 (25.6%), *10 (23.9%), and *1 (22.2%). Additionally, 51.1% of the intermediate metabolizers showed CYP2D6*10/*36+*10 as the predominant genotype (15.9%). Conclusions/Significance Our findings provide insights about genetic variations of G6PD and CYP2D6 in 88 vivax malaria patients from Yala, which may influence the safety and effectiveness of radical treatment. Optimization of 8-aminoquinoline administration may be required for safe and effective treatment in the studied population, which could be a significant challenge in achieving the goal of eliminating malaria. 2023-06-20T05:20:40Z 2023-06-20T05:20:40Z 2022-12-01 Article PLoS Neglected Tropical Diseases Vol.16 No.12 (2022) 10.1371/journal.pntd.0010986 19352735 19352727 36508454 2-s2.0-85144597457 https://repository.li.mahidol.ac.th/handle/123456789/87157 SCOPUS
institution Mahidol University
building Mahidol University Library
continent Asia
country Thailand
Thailand
content_provider Mahidol University Library
collection Mahidol University Institutional Repository
topic Medicine
spellingShingle Medicine
Chamchoy K.
Cytochrome P450 2D6 (CYP2D6) and glucose-6-phosphate dehydrogenase (G6PD) genetic variations in Thai vivax malaria patients: Implications for 8-aminoquinoline radical cure
description Background Primaquine and tafenoquine are the only licensed drugs that effectively kill the hypnozoite stage and are used to prevent Plasmodium vivax malaria relapse. However, both primaquine and tafenoquine can cause acute hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient people with varying degrees of severity depending on G6PD variants. Additionally, primaquine efficacy against malaria parasites was decreased in individuals with impaired cytochrome P450 2D6 (CYP2D6) activity due to genetic polymorphisms. This study aimed to characterize G6PD and CYP2D6 genetic variations in vivax malaria patients from Yala province, a malaria-endemic area along the Thai–Malaysian border, and determine the biochemical properties of identified G6PD variants. Methodology/Principle findings Multiplexed high-resolution melting assay and DNA sequencing detected five G6PD variants, including G6PD Kaiping, G6PD Vanua Lava, G6PD Coimbra, G6PD Mahidol, and G6PD Kerala-Kalyan. Biochemical and structural characterization revealed that G6PD Coimbra markedly reduced catalytic activity and structural stability, indicating a high susceptibility to drug-induced hemolysis. While Kerala-Kalyan had minor effects, it is possible to develop mild adverse effects when receiving radical treatment. CYP2D6 genotyping was performed using long-range PCR and DNA sequencing, and the phenotypes were predicted using the combination of allelic variants. Decreased and no-function alleles were detected at frequencies of 53.4% and 14.2%, respectively. The most common alleles were CYP2D6*36+*10 (25.6%), *10 (23.9%), and *1 (22.2%). Additionally, 51.1% of the intermediate metabolizers showed CYP2D6*10/*36+*10 as the predominant genotype (15.9%). Conclusions/Significance Our findings provide insights about genetic variations of G6PD and CYP2D6 in 88 vivax malaria patients from Yala, which may influence the safety and effectiveness of radical treatment. Optimization of 8-aminoquinoline administration may be required for safe and effective treatment in the studied population, which could be a significant challenge in achieving the goal of eliminating malaria.
author2 Mahidol University
author_facet Mahidol University
Chamchoy K.
format Article
author Chamchoy K.
author_sort Chamchoy K.
title Cytochrome P450 2D6 (CYP2D6) and glucose-6-phosphate dehydrogenase (G6PD) genetic variations in Thai vivax malaria patients: Implications for 8-aminoquinoline radical cure
title_short Cytochrome P450 2D6 (CYP2D6) and glucose-6-phosphate dehydrogenase (G6PD) genetic variations in Thai vivax malaria patients: Implications for 8-aminoquinoline radical cure
title_full Cytochrome P450 2D6 (CYP2D6) and glucose-6-phosphate dehydrogenase (G6PD) genetic variations in Thai vivax malaria patients: Implications for 8-aminoquinoline radical cure
title_fullStr Cytochrome P450 2D6 (CYP2D6) and glucose-6-phosphate dehydrogenase (G6PD) genetic variations in Thai vivax malaria patients: Implications for 8-aminoquinoline radical cure
title_full_unstemmed Cytochrome P450 2D6 (CYP2D6) and glucose-6-phosphate dehydrogenase (G6PD) genetic variations in Thai vivax malaria patients: Implications for 8-aminoquinoline radical cure
title_sort cytochrome p450 2d6 (cyp2d6) and glucose-6-phosphate dehydrogenase (g6pd) genetic variations in thai vivax malaria patients: implications for 8-aminoquinoline radical cure
publishDate 2023
url https://repository.li.mahidol.ac.th/handle/123456789/87157
_version_ 1781415438244118528