Symbol Detection in a Multi-class Dataset Based on Single Line Diagrams using Deep Learning Models

Single Line Diagrams (SLDs) are used in electrical power distribution systems. These diagrams are crucial to engineers during the installation, maintenance, and inspection phases. For the digital interpretation of these documents, deep learning-based object detection methods can be utilized. However...

Full description

Saved in:
Bibliographic Details
Main Author: Bhanbhro H.
Other Authors: Mahidol University
Format: Article
Published: 2023
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/90078
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
id th-mahidol.90078
record_format dspace
spelling th-mahidol.900782023-09-22T01:01:23Z Symbol Detection in a Multi-class Dataset Based on Single Line Diagrams using Deep Learning Models Bhanbhro H. Mahidol University Computer Science Single Line Diagrams (SLDs) are used in electrical power distribution systems. These diagrams are crucial to engineers during the installation, maintenance, and inspection phases. For the digital interpretation of these documents, deep learning-based object detection methods can be utilized. However, there is a lack of efforts made to digitize the SLDs using deep learning methods, which is due to the class-imbalance problem of these technical drawings. In this paper, a method to address this challenge is proposed. First, we use the latest variant of You Look Only Once (YOLO), YOLO v8 to localize and detect the symbols present in the single-line diagrams. Our experiments determine that the accuracy of symbol detection based on YOLO v8 is almost 95%, which is more satisfactory than its previous versions. Secondly, we use a synthetic dataset generated using multi-fake class generative adversarial network (MFCGAN) and create fake classes to cope with the class imbalance problem. The images generated using the GAN are then combined with the original images to create an augmented dataset, and YOLO v5 is used for the classification of the augmented dataset. The experiments reveal that the GAN model had the capability to learn properly from a small number of complex diagrams. The detection results show that the accuracy of YOLO v5 is more than 96.3%, which is higher than the YOLO v8 accuracy. After analyzing the experiment results, we might deduce that creating multiple fake classes improved the classification of engineering symbols in SLDs. 2023-09-21T18:01:23Z 2023-09-21T18:01:23Z 2023-01-01 Article International Journal of Advanced Computer Science and Applications Vol.14 No.8 (2023) , 43-56 10.14569/IJACSA.2023.0140806 21565570 2158107X 2-s2.0-85170639177 https://repository.li.mahidol.ac.th/handle/123456789/90078 SCOPUS
institution Mahidol University
building Mahidol University Library
continent Asia
country Thailand
Thailand
content_provider Mahidol University Library
collection Mahidol University Institutional Repository
topic Computer Science
spellingShingle Computer Science
Bhanbhro H.
Symbol Detection in a Multi-class Dataset Based on Single Line Diagrams using Deep Learning Models
description Single Line Diagrams (SLDs) are used in electrical power distribution systems. These diagrams are crucial to engineers during the installation, maintenance, and inspection phases. For the digital interpretation of these documents, deep learning-based object detection methods can be utilized. However, there is a lack of efforts made to digitize the SLDs using deep learning methods, which is due to the class-imbalance problem of these technical drawings. In this paper, a method to address this challenge is proposed. First, we use the latest variant of You Look Only Once (YOLO), YOLO v8 to localize and detect the symbols present in the single-line diagrams. Our experiments determine that the accuracy of symbol detection based on YOLO v8 is almost 95%, which is more satisfactory than its previous versions. Secondly, we use a synthetic dataset generated using multi-fake class generative adversarial network (MFCGAN) and create fake classes to cope with the class imbalance problem. The images generated using the GAN are then combined with the original images to create an augmented dataset, and YOLO v5 is used for the classification of the augmented dataset. The experiments reveal that the GAN model had the capability to learn properly from a small number of complex diagrams. The detection results show that the accuracy of YOLO v5 is more than 96.3%, which is higher than the YOLO v8 accuracy. After analyzing the experiment results, we might deduce that creating multiple fake classes improved the classification of engineering symbols in SLDs.
author2 Mahidol University
author_facet Mahidol University
Bhanbhro H.
format Article
author Bhanbhro H.
author_sort Bhanbhro H.
title Symbol Detection in a Multi-class Dataset Based on Single Line Diagrams using Deep Learning Models
title_short Symbol Detection in a Multi-class Dataset Based on Single Line Diagrams using Deep Learning Models
title_full Symbol Detection in a Multi-class Dataset Based on Single Line Diagrams using Deep Learning Models
title_fullStr Symbol Detection in a Multi-class Dataset Based on Single Line Diagrams using Deep Learning Models
title_full_unstemmed Symbol Detection in a Multi-class Dataset Based on Single Line Diagrams using Deep Learning Models
title_sort symbol detection in a multi-class dataset based on single line diagrams using deep learning models
publishDate 2023
url https://repository.li.mahidol.ac.th/handle/123456789/90078
_version_ 1781416383474565120