Energy generation from exhaust of an engine and simulation of turbine using CFD analysis
Doctor of Philosophy Degree in Energy Technology, 2021
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
Prince of Songkla University
2023
|
Subjects: | |
Online Access: | http://kb.psu.ac.th/psukb/handle/2016/17988 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Prince of Songkhla University |
Language: | English |
id |
th-psu.2016-17988 |
---|---|
record_format |
dspace |
spelling |
th-psu.2016-179882023-04-19T07:19:46Z Energy generation from exhaust of an engine and simulation of turbine using CFD analysis Kalvin, Roman Juntakan Taweekun Kitinan Maliwan คณะวิศวกรรมศาสตร์ สาขาวิชาเทคโนโลยีพลังงาน Faculty of Engineering (Energy Technology) Catalytic Converter SOLIDWORKS Flue Gas Analyzer Renewable energy sources Doctor of Philosophy Degree in Energy Technology, 2021 The aim of this research is modification of internal combustion engine for producing power from exhaust gases. Energy is extracted by placing turbine in exhaust gas passage. Two-third of the energy from combustion in a vehicle is lost as waste heat, out of which 40% is in the form of exhaust gases. Turbine was installed in the exhaust passage to generate power which would be utilized to run the electrical accessories of the engine. SOLIDWORKS were used for 3D CAD modeling and flow analysis of turbine with radial inlet-axial outlet. In addition to that ANSYS was used for stress-strain analysis. In addition, research has been carried out to check catalytic activity of catalysts made from salts/metal precursors; Cerium Sulphate Tetra hydrate, Manganese Sulphate Mono hydrate and Copper Sulphate Penta hydrate that are not expensive and could be replaced by the nobel metals as they are very expensive and absolutely not abundant on Earth. Test sample catalysts were prepared through co-precipitation method having different molar concentration and then tested the conversion efficiency by applying the catalysts on ceramic plates by using Flue Gas Analyzer. On basis of results, final catalysts was prepared and applied on monolithic ceramic plate and then tested concerning the resulting conversion rate of pollutants as compared to already installed Catalytic Converter. During the experimentation work it was observed that base metals catalyst have low thermal stability at higher temperature and it adversely altered the performance of the catalyst greatly. Future study can be done to do research on increasing the thermal stability of catalysts with different molar ratios. 2023-04-19T07:19:29Z 2023-04-19T07:19:29Z 2021 Thesis http://kb.psu.ac.th/psukb/handle/2016/17988 en Attribution-NonCommercial-NoDerivs 3.0 Thailand http://creativecommons.org/licenses/by-nc-nd/3.0/th/ application/pdf Prince of Songkla University |
institution |
Prince of Songkhla University |
building |
Khunying Long Athakravi Sunthorn Learning Resources Center |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Khunying Long Athakravi Sunthorn Learning Resources Center |
collection |
PSU Knowledge Bank |
language |
English |
topic |
Catalytic Converter SOLIDWORKS Flue Gas Analyzer Renewable energy sources |
spellingShingle |
Catalytic Converter SOLIDWORKS Flue Gas Analyzer Renewable energy sources Kalvin, Roman Energy generation from exhaust of an engine and simulation of turbine using CFD analysis |
description |
Doctor of Philosophy Degree in Energy Technology, 2021 |
author2 |
Juntakan Taweekun |
author_facet |
Juntakan Taweekun Kalvin, Roman |
format |
Theses and Dissertations |
author |
Kalvin, Roman |
author_sort |
Kalvin, Roman |
title |
Energy generation from exhaust of an engine and simulation of turbine using CFD analysis |
title_short |
Energy generation from exhaust of an engine and simulation of turbine using CFD analysis |
title_full |
Energy generation from exhaust of an engine and simulation of turbine using CFD analysis |
title_fullStr |
Energy generation from exhaust of an engine and simulation of turbine using CFD analysis |
title_full_unstemmed |
Energy generation from exhaust of an engine and simulation of turbine using CFD analysis |
title_sort |
energy generation from exhaust of an engine and simulation of turbine using cfd analysis |
publisher |
Prince of Songkla University |
publishDate |
2023 |
url |
http://kb.psu.ac.th/psukb/handle/2016/17988 |
_version_ |
1764209928261599232 |