BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS

For a vertex coloring c of a connected graph G, let be an ordered partition of V (G) into the color classes C1,C2, · · · ,Ck. For a vertex v of G, the color code c(v) of v is the k-vector (d(v,C1), d(v,C2), · · · , d(v,Ck)) where d(v,Ci) = min{d(v, x) : x ? Ci}, for 1 ? i ? k. If distinct verti...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Ramdani, Rismawati
التنسيق: Theses
اللغة:Indonesia
الوصول للمادة أونلاين:https://digilib.itb.ac.id/gdl/view/44472
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:For a vertex coloring c of a connected graph G, let be an ordered partition of V (G) into the color classes C1,C2, · · · ,Ck. For a vertex v of G, the color code c(v) of v is the k-vector (d(v,C1), d(v,C2), · · · , d(v,Ck)) where d(v,Ci) = min{d(v, x) : x ? Ci}, for 1 ? i ? k. If distinct vertices have distinct color codes, then c is called locating-coloring of G. Equivalently, is called locating set of G. Locating-coloring which contains minimum number of colors is called minimum locating coloring. Its cardinality is called locating chromatic number of G, denoted by L(G). In this final project, we consider the locating chromatic number of some cartesian product graphs, namely ladder graphs (P2 × Pn), book graphs (P2 × K1,n), prism graphs (P2 × Cn) and graphs Pm × Kn.