BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS

For a vertex coloring c of a connected graph G, let be an ordered partition of V (G) into the color classes C1,C2, · · · ,Ck. For a vertex v of G, the color code c(v) of v is the k-vector (d(v,C1), d(v,C2), · · · , d(v,Ck)) where d(v,Ci) = min{d(v, x) : x ? Ci}, for 1 ? i ? k. If distinct verti...

Full description

Saved in:
Bibliographic Details
Main Author: Ramdani, Rismawati
Format: Theses
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/44472
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:44472
spelling id-itb.:444722019-10-22T10:10:50ZBILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS Ramdani, Rismawati Indonesia Theses color code, locating set, locating coloring, locating chromatic number, cartesian product graph. INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/44472 For a vertex coloring c of a connected graph G, let be an ordered partition of V (G) into the color classes C1,C2, · · · ,Ck. For a vertex v of G, the color code c(v) of v is the k-vector (d(v,C1), d(v,C2), · · · , d(v,Ck)) where d(v,Ci) = min{d(v, x) : x ? Ci}, for 1 ? i ? k. If distinct vertices have distinct color codes, then c is called locating-coloring of G. Equivalently, is called locating set of G. Locating-coloring which contains minimum number of colors is called minimum locating coloring. Its cardinality is called locating chromatic number of G, denoted by L(G). In this final project, we consider the locating chromatic number of some cartesian product graphs, namely ladder graphs (P2 × Pn), book graphs (P2 × K1,n), prism graphs (P2 × Cn) and graphs Pm × Kn. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description For a vertex coloring c of a connected graph G, let be an ordered partition of V (G) into the color classes C1,C2, · · · ,Ck. For a vertex v of G, the color code c(v) of v is the k-vector (d(v,C1), d(v,C2), · · · , d(v,Ck)) where d(v,Ci) = min{d(v, x) : x ? Ci}, for 1 ? i ? k. If distinct vertices have distinct color codes, then c is called locating-coloring of G. Equivalently, is called locating set of G. Locating-coloring which contains minimum number of colors is called minimum locating coloring. Its cardinality is called locating chromatic number of G, denoted by L(G). In this final project, we consider the locating chromatic number of some cartesian product graphs, namely ladder graphs (P2 × Pn), book graphs (P2 × K1,n), prism graphs (P2 × Cn) and graphs Pm × Kn.
format Theses
author Ramdani, Rismawati
spellingShingle Ramdani, Rismawati
BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS
author_facet Ramdani, Rismawati
author_sort Ramdani, Rismawati
title BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS
title_short BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS
title_full BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS
title_fullStr BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS
title_full_unstemmed BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS
title_sort bilangan kromatik lokasi dari beberapa graf hasil kali kartesius
url https://digilib.itb.ac.id/gdl/view/44472
_version_ 1822270683200094208