BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS

For a vertex coloring c of a connected graph G, let be an ordered partition of V (G) into the color classes C1,C2, · · · ,Ck. For a vertex v of G, the color code c(v) of v is the k-vector (d(v,C1), d(v,C2), · · · , d(v,Ck)) where d(v,Ci) = min{d(v, x) : x ? Ci}, for 1 ? i ? k. If distinct verti...

全面介紹

Saved in:
書目詳細資料
主要作者: Ramdani, Rismawati
格式: Theses
語言:Indonesia
在線閱讀:https://digilib.itb.ac.id/gdl/view/44472
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Institut Teknologi Bandung
語言: Indonesia
id id-itb.:44472
spelling id-itb.:444722019-10-22T10:10:50ZBILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS Ramdani, Rismawati Indonesia Theses color code, locating set, locating coloring, locating chromatic number, cartesian product graph. INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/44472 For a vertex coloring c of a connected graph G, let be an ordered partition of V (G) into the color classes C1,C2, · · · ,Ck. For a vertex v of G, the color code c(v) of v is the k-vector (d(v,C1), d(v,C2), · · · , d(v,Ck)) where d(v,Ci) = min{d(v, x) : x ? Ci}, for 1 ? i ? k. If distinct vertices have distinct color codes, then c is called locating-coloring of G. Equivalently, is called locating set of G. Locating-coloring which contains minimum number of colors is called minimum locating coloring. Its cardinality is called locating chromatic number of G, denoted by L(G). In this final project, we consider the locating chromatic number of some cartesian product graphs, namely ladder graphs (P2 × Pn), book graphs (P2 × K1,n), prism graphs (P2 × Cn) and graphs Pm × Kn. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description For a vertex coloring c of a connected graph G, let be an ordered partition of V (G) into the color classes C1,C2, · · · ,Ck. For a vertex v of G, the color code c(v) of v is the k-vector (d(v,C1), d(v,C2), · · · , d(v,Ck)) where d(v,Ci) = min{d(v, x) : x ? Ci}, for 1 ? i ? k. If distinct vertices have distinct color codes, then c is called locating-coloring of G. Equivalently, is called locating set of G. Locating-coloring which contains minimum number of colors is called minimum locating coloring. Its cardinality is called locating chromatic number of G, denoted by L(G). In this final project, we consider the locating chromatic number of some cartesian product graphs, namely ladder graphs (P2 × Pn), book graphs (P2 × K1,n), prism graphs (P2 × Cn) and graphs Pm × Kn.
format Theses
author Ramdani, Rismawati
spellingShingle Ramdani, Rismawati
BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS
author_facet Ramdani, Rismawati
author_sort Ramdani, Rismawati
title BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS
title_short BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS
title_full BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS
title_fullStr BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS
title_full_unstemmed BILANGAN KROMATIK LOKASI DARI BEBERAPA GRAF HASIL KALI KARTESIUS
title_sort bilangan kromatik lokasi dari beberapa graf hasil kali kartesius
url https://digilib.itb.ac.id/gdl/view/44472
_version_ 1823640502072770560