BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNI’S INCOME(CASESTUDYOFITBTRACER STUDY2021)

Everyyear,theDirectorateofStudentAffairsofITBconductsaTracerStudy surveyofITBgraduateswiththeaimofprovidingrecommendationstoITBin improvingtheeducationsystemandquality.Thesurveydatacanbeprocessed using apredictivemodelwithmachinelearningapproach,oneofwhichispredicting ITB alumni’ssalariesastheir...

Full description

Saved in:
Bibliographic Details
Main Author: Alibasyah Wiriaatmadja, Nur
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/65209
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
Description
Summary:Everyyear,theDirectorateofStudentAffairsofITBconductsaTracerStudy surveyofITBgraduateswiththeaimofprovidingrecommendationstoITBin improvingtheeducationsystemandquality.Thesurveydatacanbeprocessed using apredictivemodelwithmachinelearningapproach,oneofwhichispredicting ITB alumni’ssalariesastheircareerbuildingmilestoneaftercompletingtheir education atITB.ThisFinalProjectaimstobuildaMultipleLinearRegression model topredictthesalaryofITBGraduatesusingthe2021ITBTracerStudydata whose columnshavebeenselected.Thedatausedinthisstudyconsistedof1815 observationsoffourteenpredictorvariablesandsalaryasresponsevariable.To simplify themodelingprocessandtofulfillmodelassumptions,datapreprocessing wasconductedsothatthedatareducedto1803observationsconsistingofeight predictor variablesandoneresponsevariable.Furthermore,theMultipleLinear RegressionmodelwassolvedbyusingBayesianstatisticalapproachtoapproximate the posteriordistributionoftheparametermodel.Metropolis-HastingsAlgorithm are usedasnumericalmethodwhichrequirestheparameterspriordistributionand the likelihooddistributionofthedataasinput.Theposteriordistributionobtained has ameanthatisquiteclosetotheestimatedparametervaluesobtainedusingthe Ordinary LeastSquaremethodasfrequentiststatisticalapproach.Samplingcanbe done fromtheposteriordistributiontomakepredictionsifanewdatasetisknown. Prediction canbedonerepeatedlyusingdifferentsetofparametersobtainedfrom sampling, sothatahistogramofpredictedvaluescanbegeneratedthatismore informativethansinglepredictionusingtheOrdinaryLeastSquaremethod.The proximity ofprediction’smeanfromthetruevaluearevariative.