BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNI’S INCOME(CASESTUDYOFITBTRACER STUDY2021)

Everyyear,theDirectorateofStudentAffairsofITBconductsaTracerStudy surveyofITBgraduateswiththeaimofprovidingrecommendationstoITBin improvingtheeducationsystemandquality.Thesurveydatacanbeprocessed using apredictivemodelwithmachinelearningapproach,oneofwhichispredicting ITB alumni’ssalariesastheir...

Full description

Saved in:
Bibliographic Details
Main Author: Alibasyah Wiriaatmadja, Nur
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/65209
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:65209
spelling id-itb.:652092022-06-21T11:58:19ZBAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNI’S INCOME(CASESTUDYOFITBTRACER STUDY2021) Alibasyah Wiriaatmadja, Nur Indonesia Final Project Multiple Linear Regression,Posterior Distribution,Metropolis-Hastings Algorithm, Salary Prediction,ITB Graduates INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/65209 Everyyear,theDirectorateofStudentAffairsofITBconductsaTracerStudy surveyofITBgraduateswiththeaimofprovidingrecommendationstoITBin improvingtheeducationsystemandquality.Thesurveydatacanbeprocessed using apredictivemodelwithmachinelearningapproach,oneofwhichispredicting ITB alumni’ssalariesastheircareerbuildingmilestoneaftercompletingtheir education atITB.ThisFinalProjectaimstobuildaMultipleLinearRegression model topredictthesalaryofITBGraduatesusingthe2021ITBTracerStudydata whose columnshavebeenselected.Thedatausedinthisstudyconsistedof1815 observationsoffourteenpredictorvariablesandsalaryasresponsevariable.To simplify themodelingprocessandtofulfillmodelassumptions,datapreprocessing wasconductedsothatthedatareducedto1803observationsconsistingofeight predictor variablesandoneresponsevariable.Furthermore,theMultipleLinear RegressionmodelwassolvedbyusingBayesianstatisticalapproachtoapproximate the posteriordistributionoftheparametermodel.Metropolis-HastingsAlgorithm are usedasnumericalmethodwhichrequirestheparameterspriordistributionand the likelihooddistributionofthedataasinput.Theposteriordistributionobtained has ameanthatisquiteclosetotheestimatedparametervaluesobtainedusingthe Ordinary LeastSquaremethodasfrequentiststatisticalapproach.Samplingcanbe done fromtheposteriordistributiontomakepredictionsifanewdatasetisknown. Prediction canbedonerepeatedlyusingdifferentsetofparametersobtainedfrom sampling, sothatahistogramofpredictedvaluescanbegeneratedthatismore informativethansinglepredictionusingtheOrdinaryLeastSquaremethod.The proximity ofprediction’smeanfromthetruevaluearevariative. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description Everyyear,theDirectorateofStudentAffairsofITBconductsaTracerStudy surveyofITBgraduateswiththeaimofprovidingrecommendationstoITBin improvingtheeducationsystemandquality.Thesurveydatacanbeprocessed using apredictivemodelwithmachinelearningapproach,oneofwhichispredicting ITB alumni’ssalariesastheircareerbuildingmilestoneaftercompletingtheir education atITB.ThisFinalProjectaimstobuildaMultipleLinearRegression model topredictthesalaryofITBGraduatesusingthe2021ITBTracerStudydata whose columnshavebeenselected.Thedatausedinthisstudyconsistedof1815 observationsoffourteenpredictorvariablesandsalaryasresponsevariable.To simplify themodelingprocessandtofulfillmodelassumptions,datapreprocessing wasconductedsothatthedatareducedto1803observationsconsistingofeight predictor variablesandoneresponsevariable.Furthermore,theMultipleLinear RegressionmodelwassolvedbyusingBayesianstatisticalapproachtoapproximate the posteriordistributionoftheparametermodel.Metropolis-HastingsAlgorithm are usedasnumericalmethodwhichrequirestheparameterspriordistributionand the likelihooddistributionofthedataasinput.Theposteriordistributionobtained has ameanthatisquiteclosetotheestimatedparametervaluesobtainedusingthe Ordinary LeastSquaremethodasfrequentiststatisticalapproach.Samplingcanbe done fromtheposteriordistributiontomakepredictionsifanewdatasetisknown. Prediction canbedonerepeatedlyusingdifferentsetofparametersobtainedfrom sampling, sothatahistogramofpredictedvaluescanbegeneratedthatismore informativethansinglepredictionusingtheOrdinaryLeastSquaremethod.The proximity ofprediction’smeanfromthetruevaluearevariative.
format Final Project
author Alibasyah Wiriaatmadja, Nur
spellingShingle Alibasyah Wiriaatmadja, Nur
BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNI’S INCOME(CASESTUDYOFITBTRACER STUDY2021)
author_facet Alibasyah Wiriaatmadja, Nur
author_sort Alibasyah Wiriaatmadja, Nur
title BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNI’S INCOME(CASESTUDYOFITBTRACER STUDY2021)
title_short BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNI’S INCOME(CASESTUDYOFITBTRACER STUDY2021)
title_full BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNI’S INCOME(CASESTUDYOFITBTRACER STUDY2021)
title_fullStr BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNI’S INCOME(CASESTUDYOFITBTRACER STUDY2021)
title_full_unstemmed BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNI’S INCOME(CASESTUDYOFITBTRACER STUDY2021)
title_sort bayesianlinearregressionforpredictingitb alumni’s income(casestudyofitbtracer study2021)
url https://digilib.itb.ac.id/gdl/view/65209
_version_ 1822932675604774912