BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNIâS INCOME(CASESTUDYOFITBTRACER STUDY2021)
Everyyear,theDirectorateofStudentAffairsofITBconductsaTracerStudy surveyofITBgraduateswiththeaimofprovidingrecommendationstoITBin improvingtheeducationsystemandquality.Thesurveydatacanbeprocessed using apredictivemodelwithmachinelearningapproach,oneofwhichispredicting ITB alumni’ssalariesastheir...
Saved in:
Main Author: | |
---|---|
Format: | Final Project |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/65209 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:65209 |
---|---|
spelling |
id-itb.:652092022-06-21T11:58:19ZBAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNIâS INCOME(CASESTUDYOFITBTRACER STUDY2021) Alibasyah Wiriaatmadja, Nur Indonesia Final Project Multiple Linear Regression,Posterior Distribution,Metropolis-Hastings Algorithm, Salary Prediction,ITB Graduates INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/65209 Everyyear,theDirectorateofStudentAffairsofITBconductsaTracerStudy surveyofITBgraduateswiththeaimofprovidingrecommendationstoITBin improvingtheeducationsystemandquality.Thesurveydatacanbeprocessed using apredictivemodelwithmachinelearningapproach,oneofwhichispredicting ITB alumni’ssalariesastheircareerbuildingmilestoneaftercompletingtheir education atITB.ThisFinalProjectaimstobuildaMultipleLinearRegression model topredictthesalaryofITBGraduatesusingthe2021ITBTracerStudydata whose columnshavebeenselected.Thedatausedinthisstudyconsistedof1815 observationsoffourteenpredictorvariablesandsalaryasresponsevariable.To simplify themodelingprocessandtofulfillmodelassumptions,datapreprocessing wasconductedsothatthedatareducedto1803observationsconsistingofeight predictor variablesandoneresponsevariable.Furthermore,theMultipleLinear RegressionmodelwassolvedbyusingBayesianstatisticalapproachtoapproximate the posteriordistributionoftheparametermodel.Metropolis-HastingsAlgorithm are usedasnumericalmethodwhichrequirestheparameterspriordistributionand the likelihooddistributionofthedataasinput.Theposteriordistributionobtained has ameanthatisquiteclosetotheestimatedparametervaluesobtainedusingthe Ordinary LeastSquaremethodasfrequentiststatisticalapproach.Samplingcanbe done fromtheposteriordistributiontomakepredictionsifanewdatasetisknown. Prediction canbedonerepeatedlyusingdifferentsetofparametersobtainedfrom sampling, sothatahistogramofpredictedvaluescanbegeneratedthatismore informativethansinglepredictionusingtheOrdinaryLeastSquaremethod.The proximity ofprediction’smeanfromthetruevaluearevariative. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
Everyyear,theDirectorateofStudentAffairsofITBconductsaTracerStudy
surveyofITBgraduateswiththeaimofprovidingrecommendationstoITBin
improvingtheeducationsystemandquality.Thesurveydatacanbeprocessed
using apredictivemodelwithmachinelearningapproach,oneofwhichispredicting
ITB alumni’ssalariesastheircareerbuildingmilestoneaftercompletingtheir
education atITB.ThisFinalProjectaimstobuildaMultipleLinearRegression
model topredictthesalaryofITBGraduatesusingthe2021ITBTracerStudydata
whose columnshavebeenselected.Thedatausedinthisstudyconsistedof1815
observationsoffourteenpredictorvariablesandsalaryasresponsevariable.To
simplify themodelingprocessandtofulfillmodelassumptions,datapreprocessing
wasconductedsothatthedatareducedto1803observationsconsistingofeight
predictor variablesandoneresponsevariable.Furthermore,theMultipleLinear
RegressionmodelwassolvedbyusingBayesianstatisticalapproachtoapproximate
the posteriordistributionoftheparametermodel.Metropolis-HastingsAlgorithm
are usedasnumericalmethodwhichrequirestheparameterspriordistributionand
the likelihooddistributionofthedataasinput.Theposteriordistributionobtained
has ameanthatisquiteclosetotheestimatedparametervaluesobtainedusingthe
Ordinary LeastSquaremethodasfrequentiststatisticalapproach.Samplingcanbe
done fromtheposteriordistributiontomakepredictionsifanewdatasetisknown.
Prediction canbedonerepeatedlyusingdifferentsetofparametersobtainedfrom
sampling, sothatahistogramofpredictedvaluescanbegeneratedthatismore
informativethansinglepredictionusingtheOrdinaryLeastSquaremethod.The
proximity ofprediction’smeanfromthetruevaluearevariative. |
format |
Final Project |
author |
Alibasyah Wiriaatmadja, Nur |
spellingShingle |
Alibasyah Wiriaatmadja, Nur BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNIâS INCOME(CASESTUDYOFITBTRACER STUDY2021) |
author_facet |
Alibasyah Wiriaatmadja, Nur |
author_sort |
Alibasyah Wiriaatmadja, Nur |
title |
BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNIâS INCOME(CASESTUDYOFITBTRACER STUDY2021) |
title_short |
BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNIâS INCOME(CASESTUDYOFITBTRACER STUDY2021) |
title_full |
BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNIâS INCOME(CASESTUDYOFITBTRACER STUDY2021) |
title_fullStr |
BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNIâS INCOME(CASESTUDYOFITBTRACER STUDY2021) |
title_full_unstemmed |
BAYESIANLINEARREGRESSIONFORPREDICTINGITB ALUMNIâS INCOME(CASESTUDYOFITBTRACER STUDY2021) |
title_sort |
bayesianlinearregressionforpredictingitb alumniâs income(casestudyofitbtracer study2021) |
url |
https://digilib.itb.ac.id/gdl/view/65209 |
_version_ |
1822932675604774912 |