SIMULATION OF MODULAR EXPONENTIAL CIRCUIT VIA QUANTUM FOURIER TRANSFORM

Modular exponents are the most widely used functions in the field of computational science and cryptography. In the RSA (Rivest–Shamir–Adleman) cryptographic system, the modular exponential function is used for integer factorization. P. Shor (1994) has used the approach of quantum computation to...

Full description

Saved in:
Bibliographic Details
Main Author: Zaidan Pradana, Faisal
Format: Theses
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/73355
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:73355
spelling id-itb.:733552023-06-19T15:57:32ZSIMULATION OF MODULAR EXPONENTIAL CIRCUIT VIA QUANTUM FOURIER TRANSFORM Zaidan Pradana, Faisal Indonesia Theses Modular exponents, quantum circuit, quantum Fourier transform INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/73355 Modular exponents are the most widely used functions in the field of computational science and cryptography. In the RSA (Rivest–Shamir–Adleman) cryptographic system, the modular exponential function is used for integer factorization. P. Shor (1994) has used the approach of quantum computation to determine the period of the modular exponential function. Then, A. Pavlidis (2012) increased the efficiency of modular exponential calculations by doing the quantum Fourier transform. This thesis will discuss the simulation to construct a quantum circuit that implements the modular exponential function via quantum Fourier transform. This construction consists of four steps, i.e. QFT adder (?ADD), Fourier Multiplier/Accumulator (?MAC), QFT Divider by constant (GM?DIV ), and Generic Modular Multiplier. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description Modular exponents are the most widely used functions in the field of computational science and cryptography. In the RSA (Rivest–Shamir–Adleman) cryptographic system, the modular exponential function is used for integer factorization. P. Shor (1994) has used the approach of quantum computation to determine the period of the modular exponential function. Then, A. Pavlidis (2012) increased the efficiency of modular exponential calculations by doing the quantum Fourier transform. This thesis will discuss the simulation to construct a quantum circuit that implements the modular exponential function via quantum Fourier transform. This construction consists of four steps, i.e. QFT adder (?ADD), Fourier Multiplier/Accumulator (?MAC), QFT Divider by constant (GM?DIV ), and Generic Modular Multiplier.
format Theses
author Zaidan Pradana, Faisal
spellingShingle Zaidan Pradana, Faisal
SIMULATION OF MODULAR EXPONENTIAL CIRCUIT VIA QUANTUM FOURIER TRANSFORM
author_facet Zaidan Pradana, Faisal
author_sort Zaidan Pradana, Faisal
title SIMULATION OF MODULAR EXPONENTIAL CIRCUIT VIA QUANTUM FOURIER TRANSFORM
title_short SIMULATION OF MODULAR EXPONENTIAL CIRCUIT VIA QUANTUM FOURIER TRANSFORM
title_full SIMULATION OF MODULAR EXPONENTIAL CIRCUIT VIA QUANTUM FOURIER TRANSFORM
title_fullStr SIMULATION OF MODULAR EXPONENTIAL CIRCUIT VIA QUANTUM FOURIER TRANSFORM
title_full_unstemmed SIMULATION OF MODULAR EXPONENTIAL CIRCUIT VIA QUANTUM FOURIER TRANSFORM
title_sort simulation of modular exponential circuit via quantum fourier transform
url https://digilib.itb.ac.id/gdl/view/73355
_version_ 1822992974176321536