Tocotrienols Modulate Breast Cancer Secretomes and Affect Cancer-Signaling Pathways in MDA-MB-231 Cells: A Label-Free Quantitative Proteomic Analysis

Tocotrienols (T3), a family of vitamin E, are reported to possess potent anti-cancer effects but the molecular mechanisms behind these effects still remain unclear. The aim of this study was to investigate how T3 exert anti-cancer effects on MDA-MB-231 human breast cancer cells. The MDA-MB-231 cells...

Full description

Saved in:
Bibliographic Details
Main Authors: Ramdas, Premdass, Radhakrishnan, Ammu Kutty, Abdu Sani, Asmahani Azira, Abdul-Rahman, Puteri Shafinaz
Format: Article
Published: Taylor & Francis 2019
Subjects:
Online Access:http://eprints.um.edu.my/23684/
https://doi.org/10.1080/01635581.2019.1607407
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaya
id my.um.eprints.23684
record_format eprints
spelling my.um.eprints.236842020-02-06T01:18:06Z http://eprints.um.edu.my/23684/ Tocotrienols Modulate Breast Cancer Secretomes and Affect Cancer-Signaling Pathways in MDA-MB-231 Cells: A Label-Free Quantitative Proteomic Analysis Ramdas, Premdass Radhakrishnan, Ammu Kutty Abdu Sani, Asmahani Azira Abdul-Rahman, Puteri Shafinaz R Medicine Tocotrienols (T3), a family of vitamin E, are reported to possess potent anti-cancer effects but the molecular mechanisms behind these effects still remain unclear. The aim of this study was to investigate how T3 exert anti-cancer effects on MDA-MB-231 human breast cancer cells. The MDA-MB-231 cells were chosen for this study as they are triple-negative and highly metastatic cells, which form aggressive tumors in experimental models. The MDA-MB-231 cells were treated with varying concentrations (0–20 µg mL−1) of gamma (γ) or delta (δ) T3 and the secretome profiles of these cells treated with half maximal inhibitory concentration (IC50) of γT3 (5.8 µg mL−1) or δT3 (4.0 µg mL−1) were determined using label-free quantitative proteomic strategy. A total of 103, 174 and 141 proteins were identified with ProteinLynx Global Server (PLGS) score of more than 200 and above 25% sequence coverage in the untreated control and T3-treated cell culture supernatant respectively. A total of 18 proteins were dysregulated between untreated control and T3 (δT3 or γT3) treated conditions. The results showed that T3 treatment downregulated the exogenous Cathepsin D and Serpine1 proteins but upregulated Profilin-1 protein, which play a key role in breast cancer in the MDA-MB-231 cells. These findings strongly suggest that T3 may induce differential expression of secreted proteins involved in the cytoskeletal regulation of RHO GTPase signaling pathway. © 2019, © 2019 Taylor & Francis Group, LLC. Taylor & Francis 2019 Article PeerReviewed Ramdas, Premdass and Radhakrishnan, Ammu Kutty and Abdu Sani, Asmahani Azira and Abdul-Rahman, Puteri Shafinaz (2019) Tocotrienols Modulate Breast Cancer Secretomes and Affect Cancer-Signaling Pathways in MDA-MB-231 Cells: A Label-Free Quantitative Proteomic Analysis. Nutrition and Cancer, 71 (8). pp. 1263-1271. ISSN 0163-5581 https://doi.org/10.1080/01635581.2019.1607407 doi:10.1080/01635581.2019.1607407
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic R Medicine
spellingShingle R Medicine
Ramdas, Premdass
Radhakrishnan, Ammu Kutty
Abdu Sani, Asmahani Azira
Abdul-Rahman, Puteri Shafinaz
Tocotrienols Modulate Breast Cancer Secretomes and Affect Cancer-Signaling Pathways in MDA-MB-231 Cells: A Label-Free Quantitative Proteomic Analysis
description Tocotrienols (T3), a family of vitamin E, are reported to possess potent anti-cancer effects but the molecular mechanisms behind these effects still remain unclear. The aim of this study was to investigate how T3 exert anti-cancer effects on MDA-MB-231 human breast cancer cells. The MDA-MB-231 cells were chosen for this study as they are triple-negative and highly metastatic cells, which form aggressive tumors in experimental models. The MDA-MB-231 cells were treated with varying concentrations (0–20 µg mL−1) of gamma (γ) or delta (δ) T3 and the secretome profiles of these cells treated with half maximal inhibitory concentration (IC50) of γT3 (5.8 µg mL−1) or δT3 (4.0 µg mL−1) were determined using label-free quantitative proteomic strategy. A total of 103, 174 and 141 proteins were identified with ProteinLynx Global Server (PLGS) score of more than 200 and above 25% sequence coverage in the untreated control and T3-treated cell culture supernatant respectively. A total of 18 proteins were dysregulated between untreated control and T3 (δT3 or γT3) treated conditions. The results showed that T3 treatment downregulated the exogenous Cathepsin D and Serpine1 proteins but upregulated Profilin-1 protein, which play a key role in breast cancer in the MDA-MB-231 cells. These findings strongly suggest that T3 may induce differential expression of secreted proteins involved in the cytoskeletal regulation of RHO GTPase signaling pathway. © 2019, © 2019 Taylor & Francis Group, LLC.
format Article
author Ramdas, Premdass
Radhakrishnan, Ammu Kutty
Abdu Sani, Asmahani Azira
Abdul-Rahman, Puteri Shafinaz
author_facet Ramdas, Premdass
Radhakrishnan, Ammu Kutty
Abdu Sani, Asmahani Azira
Abdul-Rahman, Puteri Shafinaz
author_sort Ramdas, Premdass
title Tocotrienols Modulate Breast Cancer Secretomes and Affect Cancer-Signaling Pathways in MDA-MB-231 Cells: A Label-Free Quantitative Proteomic Analysis
title_short Tocotrienols Modulate Breast Cancer Secretomes and Affect Cancer-Signaling Pathways in MDA-MB-231 Cells: A Label-Free Quantitative Proteomic Analysis
title_full Tocotrienols Modulate Breast Cancer Secretomes and Affect Cancer-Signaling Pathways in MDA-MB-231 Cells: A Label-Free Quantitative Proteomic Analysis
title_fullStr Tocotrienols Modulate Breast Cancer Secretomes and Affect Cancer-Signaling Pathways in MDA-MB-231 Cells: A Label-Free Quantitative Proteomic Analysis
title_full_unstemmed Tocotrienols Modulate Breast Cancer Secretomes and Affect Cancer-Signaling Pathways in MDA-MB-231 Cells: A Label-Free Quantitative Proteomic Analysis
title_sort tocotrienols modulate breast cancer secretomes and affect cancer-signaling pathways in mda-mb-231 cells: a label-free quantitative proteomic analysis
publisher Taylor & Francis
publishDate 2019
url http://eprints.um.edu.my/23684/
https://doi.org/10.1080/01635581.2019.1607407
_version_ 1662755165173710848