Proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk Human Papillomavirus 16 and 18 E7 transfected cells

The High-Risk Human Papillomaviruses (HR-HPVs) 16 and 18 are known to cause cervical cancer, which is primarily attributed to E6 and E7 oncoproteins. In addition, recent studies have focused on the vital role of the p130 pocket protein as an oncosuppressor to limit the expression of E2F transcriptio...

Full description

Saved in:
Bibliographic Details
Main Authors: Gandhi, Sivasangkary, Nor Rashid, Nurshamimi, Mohamad Razif, Muhammad Fazril, Othman, Shatrah
Format: Article
Published: Springer 2021
Subjects:
Online Access:http://eprints.um.edu.my/26618/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaya
id my.um.eprints.26618
record_format eprints
spelling my.um.eprints.266182022-03-29T08:07:57Z http://eprints.um.edu.my/26618/ Proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk Human Papillomavirus 16 and 18 E7 transfected cells Gandhi, Sivasangkary Nor Rashid, Nurshamimi Mohamad Razif, Muhammad Fazril Othman, Shatrah R Medicine (General) The High-Risk Human Papillomaviruses (HR-HPVs) 16 and 18 are known to cause cervical cancer, which is primarily attributed to E6 and E7 oncoproteins. In addition, recent studies have focused on the vital role of the p130 pocket protein as an oncosuppressor to limit the expression of E2F transcription factors required for cell cycle progression. In view of this, the current study was conducted to investigate the mechanism by which transfection with HPV16/18 E7 leads to the deregulation of the host cell cycle, altering the localisation of p130, and expression of differentiation genes in Human Keratinocytes (HaCaT) cells. Co-immunoprecipitation, Western blot analysis, immunofluorescence microscopy, flow cytometry, quantitative-Polymerase Chain Reaction (qPCR), and the inhibition of p130 by MG132 inhibitor were employed to investigate the loss of p130 and its disruption in HPV 16/18 E7-transfected HaCaT cells. The HPV16- and HPV18-transformed cells, known as CaSki and HeLa, respectively, were also used to complement the ectopic expressions of E7 in HaCaT cells. Normal keratinocytes displayed higher level of p130 expression than HPV-transformed cells. In addition, the immunofluorescence analysis revealed that both HPV 16/18 E7-transfected HaCaT and HPV-transformed cells exhibited higher level of cytoplasmic p130 compared to nuclear p130. A significant increase in the number of S/G2 phase cells in HPV-transformed cells was also recorded since E7 has been shown to stimulate proliferation through the deactivation of Retinoblastoma Protein (pRB)-dependent G1/S checkpoint. Furthermore, the findings recorded the down-regulation of keratinocyte differentiation markers, namely p130, keratin10, and involucrin. The proteasomal degradation of the exported p130 confirmed the cellular localisation pattern of p130, which was commonly observed in cancerous cells. The findings provide strong evidence that the localisation of nuclear p130 nuclear was disrupted by HPV16/18 E7 led to the deregulation of the cell cycle and the impairment of cellular differentiation ultimately lead to cellular transformation. Springer 2021-06 Article PeerReviewed Gandhi, Sivasangkary and Nor Rashid, Nurshamimi and Mohamad Razif, Muhammad Fazril and Othman, Shatrah (2021) Proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk Human Papillomavirus 16 and 18 E7 transfected cells. Molecular Biology Reports, 48 (6). pp. 5121-5133. ISSN 0301-4851, DOI https://doi.org/10.1007/s11033-021-06509-4 <https://doi.org/10.1007/s11033-021-06509-4>. 10.1007/s11033-021-06509-4
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic R Medicine (General)
spellingShingle R Medicine (General)
Gandhi, Sivasangkary
Nor Rashid, Nurshamimi
Mohamad Razif, Muhammad Fazril
Othman, Shatrah
Proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk Human Papillomavirus 16 and 18 E7 transfected cells
description The High-Risk Human Papillomaviruses (HR-HPVs) 16 and 18 are known to cause cervical cancer, which is primarily attributed to E6 and E7 oncoproteins. In addition, recent studies have focused on the vital role of the p130 pocket protein as an oncosuppressor to limit the expression of E2F transcription factors required for cell cycle progression. In view of this, the current study was conducted to investigate the mechanism by which transfection with HPV16/18 E7 leads to the deregulation of the host cell cycle, altering the localisation of p130, and expression of differentiation genes in Human Keratinocytes (HaCaT) cells. Co-immunoprecipitation, Western blot analysis, immunofluorescence microscopy, flow cytometry, quantitative-Polymerase Chain Reaction (qPCR), and the inhibition of p130 by MG132 inhibitor were employed to investigate the loss of p130 and its disruption in HPV 16/18 E7-transfected HaCaT cells. The HPV16- and HPV18-transformed cells, known as CaSki and HeLa, respectively, were also used to complement the ectopic expressions of E7 in HaCaT cells. Normal keratinocytes displayed higher level of p130 expression than HPV-transformed cells. In addition, the immunofluorescence analysis revealed that both HPV 16/18 E7-transfected HaCaT and HPV-transformed cells exhibited higher level of cytoplasmic p130 compared to nuclear p130. A significant increase in the number of S/G2 phase cells in HPV-transformed cells was also recorded since E7 has been shown to stimulate proliferation through the deactivation of Retinoblastoma Protein (pRB)-dependent G1/S checkpoint. Furthermore, the findings recorded the down-regulation of keratinocyte differentiation markers, namely p130, keratin10, and involucrin. The proteasomal degradation of the exported p130 confirmed the cellular localisation pattern of p130, which was commonly observed in cancerous cells. The findings provide strong evidence that the localisation of nuclear p130 nuclear was disrupted by HPV16/18 E7 led to the deregulation of the cell cycle and the impairment of cellular differentiation ultimately lead to cellular transformation.
format Article
author Gandhi, Sivasangkary
Nor Rashid, Nurshamimi
Mohamad Razif, Muhammad Fazril
Othman, Shatrah
author_facet Gandhi, Sivasangkary
Nor Rashid, Nurshamimi
Mohamad Razif, Muhammad Fazril
Othman, Shatrah
author_sort Gandhi, Sivasangkary
title Proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk Human Papillomavirus 16 and 18 E7 transfected cells
title_short Proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk Human Papillomavirus 16 and 18 E7 transfected cells
title_full Proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk Human Papillomavirus 16 and 18 E7 transfected cells
title_fullStr Proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk Human Papillomavirus 16 and 18 E7 transfected cells
title_full_unstemmed Proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk Human Papillomavirus 16 and 18 E7 transfected cells
title_sort proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk human papillomavirus 16 and 18 e7 transfected cells
publisher Springer
publishDate 2021
url http://eprints.um.edu.my/26618/
_version_ 1735409435886485504