Stiffness estimation of planar spiral spring based on Gaussian process regression
Planar spiral spring is important for the dimensional miniaturisation of motor-based elastic actuators. However, when the stiffness calculation of the spring arm is based on simple beam bending theory, the results possess substantial errors compared with the stiffness obtained from finite-element an...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Published: |
Nature Research
2022
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/41874/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.eprints.41874 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.418742023-10-18T07:44:58Z http://eprints.um.edu.my/41874/ Stiffness estimation of planar spiral spring based on Gaussian process regression Liu, Jingjing Abu Osman, Noor Azuan Al Kouzbary, Mouaz Al Kouzbary, Hamza Abd Razak, Nasrul Anuar Shasmin, Hanie Nadia Arifin, Nooranida Q Science (General) T Technology (General) Planar spiral spring is important for the dimensional miniaturisation of motor-based elastic actuators. However, when the stiffness calculation of the spring arm is based on simple beam bending theory, the results possess substantial errors compared with the stiffness obtained from finite-element analysis (FEA). It deems that the errors arise from the spiral length term in the calculation formula. Two Gaussian process regression models are trained to amend this term in the stiffness calculation of spring arm and complete spring. For the former, 216 spring arms' data sets, including different spiral radiuses, pitches, wrap angles and the stiffness from FEA, are employed for training. The latter engages 180 double-arm springs' data sets, including widths instead of wrap angles. The simulation of five spring arms and five planar spiral springs with arbitrary dimensional parameters verifies that the absolute values of errors between the predicted stiffness and the stiffness from FEA are reduced to be less than 0.5% and 2.8%, respectively. A planar spiral spring for a powered ankle-foot prosthesis is designed and manufactured to verify further, of which the predicted value possesses a 3.25% error compared with the measured stiffness. Therefore, the amendment based on the prediction of trained models is available. Nature Research 2022-07-02 Article PeerReviewed Liu, Jingjing and Abu Osman, Noor Azuan and Al Kouzbary, Mouaz and Al Kouzbary, Hamza and Abd Razak, Nasrul Anuar and Shasmin, Hanie Nadia and Arifin, Nooranida (2022) Stiffness estimation of planar spiral spring based on Gaussian process regression. Scientific Reports, 12 (1). ISSN 2045-2322, DOI https://doi.org/10.1038/s41598-022-15421-1 <https://doi.org/10.1038/s41598-022-15421-1>. 10.1038/s41598-022-15421-1 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
Q Science (General) T Technology (General) |
spellingShingle |
Q Science (General) T Technology (General) Liu, Jingjing Abu Osman, Noor Azuan Al Kouzbary, Mouaz Al Kouzbary, Hamza Abd Razak, Nasrul Anuar Shasmin, Hanie Nadia Arifin, Nooranida Stiffness estimation of planar spiral spring based on Gaussian process regression |
description |
Planar spiral spring is important for the dimensional miniaturisation of motor-based elastic actuators. However, when the stiffness calculation of the spring arm is based on simple beam bending theory, the results possess substantial errors compared with the stiffness obtained from finite-element analysis (FEA). It deems that the errors arise from the spiral length term in the calculation formula. Two Gaussian process regression models are trained to amend this term in the stiffness calculation of spring arm and complete spring. For the former, 216 spring arms' data sets, including different spiral radiuses, pitches, wrap angles and the stiffness from FEA, are employed for training. The latter engages 180 double-arm springs' data sets, including widths instead of wrap angles. The simulation of five spring arms and five planar spiral springs with arbitrary dimensional parameters verifies that the absolute values of errors between the predicted stiffness and the stiffness from FEA are reduced to be less than 0.5% and 2.8%, respectively. A planar spiral spring for a powered ankle-foot prosthesis is designed and manufactured to verify further, of which the predicted value possesses a 3.25% error compared with the measured stiffness. Therefore, the amendment based on the prediction of trained models is available. |
format |
Article |
author |
Liu, Jingjing Abu Osman, Noor Azuan Al Kouzbary, Mouaz Al Kouzbary, Hamza Abd Razak, Nasrul Anuar Shasmin, Hanie Nadia Arifin, Nooranida |
author_facet |
Liu, Jingjing Abu Osman, Noor Azuan Al Kouzbary, Mouaz Al Kouzbary, Hamza Abd Razak, Nasrul Anuar Shasmin, Hanie Nadia Arifin, Nooranida |
author_sort |
Liu, Jingjing |
title |
Stiffness estimation of planar spiral spring based on Gaussian process regression |
title_short |
Stiffness estimation of planar spiral spring based on Gaussian process regression |
title_full |
Stiffness estimation of planar spiral spring based on Gaussian process regression |
title_fullStr |
Stiffness estimation of planar spiral spring based on Gaussian process regression |
title_full_unstemmed |
Stiffness estimation of planar spiral spring based on Gaussian process regression |
title_sort |
stiffness estimation of planar spiral spring based on gaussian process regression |
publisher |
Nature Research |
publishDate |
2022 |
url |
http://eprints.um.edu.my/41874/ |
_version_ |
1781704566865133568 |