Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong
Let k ⩾ 1 and n1, . . . , nk ⩾ 2 be integers. Let F be a field and letMni be the algebra of ni × ni matrices over F for i = 1, . . . , k. Let ⊗ki=1Mni be the tensor product of Mn1 , . . . ,Mnk . In this dissertation, we obtain a complete structural characterization of additive maps ψ : ⊗k i=1 M...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Published: |
2021
|
Subjects: | |
Online Access: | http://studentsrepo.um.edu.my/12911/2/Wong_Jian_Yong.pdf http://studentsrepo.um.edu.my/12911/1/Wong_Jian_Yong.pdf http://studentsrepo.um.edu.my/12911/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
Summary: | Let k ⩾ 1 and n1, . . . , nk ⩾ 2 be integers. Let F be a field and letMni be the algebra of ni × ni matrices over F for i = 1, . . . , k. Let
⊗ki=1Mni be the tensor product of Mn1 , . . . ,Mnk . In this dissertation, we obtain a complete structural characterization of additive maps ψ :
⊗k
i=1
Mni
→
⊗k
i=1
Mni satisfying
ψ(⊗k
i=1Ai)(⊗ki
=1Ai) = (⊗ki
=1Ai) ψ(⊗ki
=1Ai)
for all A1 ∈ S1,n1 , . . . ,Ak ∈ Sk,nk , where
Si,ni =
{
E(ni)
st + αE(ni)
pq : α ∈ F and 1 ⩽ p, q, s, t ⩽ ni are not all distinct integers
}
and E(ni)
st is the standard matrix unit inMni for i = 1, . . . , k. In particular, we show that
ψ :Mn1
→Mn1 is an additive map commuting on S1,n1 if and only if there exist a scalar
λ ∈ F and an additive map μ :Mn1
→ F such that
ψ(A) = λA + μ(A)In1
for all A ∈ Mn1 , where In1
∈ Mn1 is the identity matrix. As an application, we
classify additive maps ψ :
⊗k
i=1
Mni
→
⊗k
i=1
Mni satisfying ψ(⊗ki
=1Ai)(⊗ki
=1Ai) =
(⊗ki
=1Ai) ψ(⊗ki=1Ai) for all A1 ∈ Rn1
r1 , . . . ,Ak ∈ Rnk
rk . Here, Rni
ri denotes the set of rank
ri matrices inMni and 1 < ri ⩽ ni is a fixed integer such that ri ̸= ni when ni = 2 and
|F| = 2 for i = 1, . . . , k.
|
---|