Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong
Let k ⩾ 1 and n1, . . . , nk ⩾ 2 be integers. Let F be a field and letMni be the algebra of ni × ni matrices over F for i = 1, . . . , k. Let ⊗ki=1Mni be the tensor product of Mn1 , . . . ,Mnk . In this dissertation, we obtain a complete structural characterization of additive maps ψ : ⊗k i=1 M...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Published: |
2021
|
Subjects: | |
Online Access: | http://studentsrepo.um.edu.my/12911/2/Wong_Jian_Yong.pdf http://studentsrepo.um.edu.my/12911/1/Wong_Jian_Yong.pdf http://studentsrepo.um.edu.my/12911/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.stud.12911 |
---|---|
record_format |
eprints |
spelling |
my.um.stud.129112022-02-28T23:55:46Z Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong Wong , Jian Yong QA Mathematics Let k ⩾ 1 and n1, . . . , nk ⩾ 2 be integers. Let F be a field and letMni be the algebra of ni × ni matrices over F for i = 1, . . . , k. Let ⊗ki=1Mni be the tensor product of Mn1 , . . . ,Mnk . In this dissertation, we obtain a complete structural characterization of additive maps ψ : ⊗k i=1 Mni → ⊗k i=1 Mni satisfying ψ(⊗k i=1Ai)(⊗ki =1Ai) = (⊗ki =1Ai) ψ(⊗ki =1Ai) for all A1 ∈ S1,n1 , . . . ,Ak ∈ Sk,nk , where Si,ni = { E(ni) st + αE(ni) pq : α ∈ F and 1 ⩽ p, q, s, t ⩽ ni are not all distinct integers } and E(ni) st is the standard matrix unit inMni for i = 1, . . . , k. In particular, we show that ψ :Mn1 →Mn1 is an additive map commuting on S1,n1 if and only if there exist a scalar λ ∈ F and an additive map μ :Mn1 → F such that ψ(A) = λA + μ(A)In1 for all A ∈ Mn1 , where In1 ∈ Mn1 is the identity matrix. As an application, we classify additive maps ψ : ⊗k i=1 Mni → ⊗k i=1 Mni satisfying ψ(⊗ki =1Ai)(⊗ki =1Ai) = (⊗ki =1Ai) ψ(⊗ki=1Ai) for all A1 ∈ Rn1 r1 , . . . ,Ak ∈ Rnk rk . Here, Rni ri denotes the set of rank ri matrices inMni and 1 < ri ⩽ ni is a fixed integer such that ri ̸= ni when ni = 2 and |F| = 2 for i = 1, . . . , k. 2021-05 Thesis NonPeerReviewed application/pdf http://studentsrepo.um.edu.my/12911/2/Wong_Jian_Yong.pdf application/pdf http://studentsrepo.um.edu.my/12911/1/Wong_Jian_Yong.pdf Wong , Jian Yong (2021) Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong. Masters thesis, Universiti Malaya. http://studentsrepo.um.edu.my/12911/ |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Student Repository |
url_provider |
http://studentsrepo.um.edu.my/ |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Wong , Jian Yong Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong |
description |
Let k ⩾ 1 and n1, . . . , nk ⩾ 2 be integers. Let F be a field and letMni be the algebra of ni × ni matrices over F for i = 1, . . . , k. Let
⊗ki=1Mni be the tensor product of Mn1 , . . . ,Mnk . In this dissertation, we obtain a complete structural characterization of additive maps ψ :
⊗k
i=1
Mni
→
⊗k
i=1
Mni satisfying
ψ(⊗k
i=1Ai)(⊗ki
=1Ai) = (⊗ki
=1Ai) ψ(⊗ki
=1Ai)
for all A1 ∈ S1,n1 , . . . ,Ak ∈ Sk,nk , where
Si,ni =
{
E(ni)
st + αE(ni)
pq : α ∈ F and 1 ⩽ p, q, s, t ⩽ ni are not all distinct integers
}
and E(ni)
st is the standard matrix unit inMni for i = 1, . . . , k. In particular, we show that
ψ :Mn1
→Mn1 is an additive map commuting on S1,n1 if and only if there exist a scalar
λ ∈ F and an additive map μ :Mn1
→ F such that
ψ(A) = λA + μ(A)In1
for all A ∈ Mn1 , where In1
∈ Mn1 is the identity matrix. As an application, we
classify additive maps ψ :
⊗k
i=1
Mni
→
⊗k
i=1
Mni satisfying ψ(⊗ki
=1Ai)(⊗ki
=1Ai) =
(⊗ki
=1Ai) ψ(⊗ki=1Ai) for all A1 ∈ Rn1
r1 , . . . ,Ak ∈ Rnk
rk . Here, Rni
ri denotes the set of rank
ri matrices inMni and 1 < ri ⩽ ni is a fixed integer such that ri ̸= ni when ni = 2 and
|F| = 2 for i = 1, . . . , k.
|
format |
Thesis |
author |
Wong , Jian Yong |
author_facet |
Wong , Jian Yong |
author_sort |
Wong , Jian Yong |
title |
Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong |
title_short |
Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong |
title_full |
Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong |
title_fullStr |
Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong |
title_full_unstemmed |
Commuting additive maps on tensor products of matrix algebras / Wong Jian Yong |
title_sort |
commuting additive maps on tensor products of matrix algebras / wong jian yong |
publishDate |
2021 |
url |
http://studentsrepo.um.edu.my/12911/2/Wong_Jian_Yong.pdf http://studentsrepo.um.edu.my/12911/1/Wong_Jian_Yong.pdf http://studentsrepo.um.edu.my/12911/ |
_version_ |
1738506657883750400 |