Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis
Alignment; Charge carriers; Computer software; Copper compounds; Efficiency; Electron affinity; Energy gap; Heterojunctions; Layered semiconductors; Molybdenum compounds; Numerical analysis; Semiconductor doping; Solar cells; Thin film solar cells; Thin films; Tin compounds; Transition metals; Cell...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Elsevier Ltd
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Tenaga Nasional |
Summary: | Alignment; Charge carriers; Computer software; Copper compounds; Efficiency; Electron affinity; Energy gap; Heterojunctions; Layered semiconductors; Molybdenum compounds; Numerical analysis; Semiconductor doping; Solar cells; Thin film solar cells; Thin films; Tin compounds; Transition metals; Cell performance; Cu2ZnSnS4; Czts solar cells; Higher efficiency; Interfacial layer; Layer thickness; Metal-semiconductor junctions; Transition metal dichalcogenides; Zinc compounds; electron; energy efficiency; film; numerical method; simulation; software; solar power; transition element |
---|