Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis

Alignment; Charge carriers; Computer software; Copper compounds; Efficiency; Electron affinity; Energy gap; Heterojunctions; Layered semiconductors; Molybdenum compounds; Numerical analysis; Semiconductor doping; Solar cells; Thin film solar cells; Thin films; Tin compounds; Transition metals; Cell...

Full description

Saved in:
Bibliographic Details
Main Authors: Ferdaous M.T., Shahahmadi S.A., Chelvanathan P., Akhtaruzzaman M., Alharbi F.H., Sopian K., Tiong S.K., Amin N.
Other Authors: 55567613100
Format: Article
Published: Elsevier Ltd 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Tenaga Nasional
id my.uniten.dspace-24822
record_format dspace
spelling my.uniten.dspace-248222023-05-29T15:27:32Z Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis Ferdaous M.T. Shahahmadi S.A. Chelvanathan P. Akhtaruzzaman M. Alharbi F.H. Sopian K. Tiong S.K. Amin N. 55567613100 55567116600 35766323200 57195441001 24476231400 7003375391 15128307800 7102424614 Alignment; Charge carriers; Computer software; Copper compounds; Efficiency; Electron affinity; Energy gap; Heterojunctions; Layered semiconductors; Molybdenum compounds; Numerical analysis; Semiconductor doping; Solar cells; Thin film solar cells; Thin films; Tin compounds; Transition metals; Cell performance; Cu2ZnSnS4; Czts solar cells; Higher efficiency; Interfacial layer; Layer thickness; Metal-semiconductor junctions; Transition metal dichalcogenides; Zinc compounds; electron; energy efficiency; film; numerical method; simulation; software; solar power; transition element In this study, the effects of transition metal dichalcogenide, MoS2 interfacial layer formation between the Cu2ZnSnS4 (CZTS) absorber layer and Mo back contact in a conventional CZTS thin film solar cell (TFSC) structure have been studied by numerical simulation using wxAMPS-1D software. The goal of this study is to elucidate the effects of both n and p-type MoS2 on the overall CZTS solar cell's performance from the viewpoint of metal-semiconductor junction and heterojunction band alignment. Interestingly, CZTS device, regardless of p or n-type MoS2 largely outperforms device without any MoS2 due to lower back contact barrier value. Significant transition in efficiency is noticed when acceptor (increases efficiency) or donor (decreases efficiency) concentration has a transition from 1016 cm?3 to higher concentration of 1018 cm?3 or more. Also, effect of variable electron affinity and band gap of MoS2 has been discussed from band alignment perspective. Generally, MoS2 layer with lower electron affinity and band gap is preferred to induce desirable band alignment and subsequently result in higher efficiency. All-in all, the formation of p-type MoS2 in CZTS solar cells can be tuned to improve the cell performance mainly by doping with higher acceptor doping concentration and limiting layer thickness. However, the detrimental effect of n-MoS2 can be prevented by maintaining thinner layer in the vicinity of ?30 nm with low to moderate donor doping (<1016 cm?3). � 2018 Elsevier Ltd Final 2023-05-29T07:27:32Z 2023-05-29T07:27:32Z 2019 Article 10.1016/j.solener.2018.11.055 2-s2.0-85058637716 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058637716&doi=10.1016%2fj.solener.2018.11.055&partnerID=40&md5=bc53d928ad782e74e811bae2fbbcf6c0 https://irepository.uniten.edu.my/handle/123456789/24822 178 162 172 Elsevier Ltd Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description Alignment; Charge carriers; Computer software; Copper compounds; Efficiency; Electron affinity; Energy gap; Heterojunctions; Layered semiconductors; Molybdenum compounds; Numerical analysis; Semiconductor doping; Solar cells; Thin film solar cells; Thin films; Tin compounds; Transition metals; Cell performance; Cu2ZnSnS4; Czts solar cells; Higher efficiency; Interfacial layer; Layer thickness; Metal-semiconductor junctions; Transition metal dichalcogenides; Zinc compounds; electron; energy efficiency; film; numerical method; simulation; software; solar power; transition element
author2 55567613100
author_facet 55567613100
Ferdaous M.T.
Shahahmadi S.A.
Chelvanathan P.
Akhtaruzzaman M.
Alharbi F.H.
Sopian K.
Tiong S.K.
Amin N.
format Article
author Ferdaous M.T.
Shahahmadi S.A.
Chelvanathan P.
Akhtaruzzaman M.
Alharbi F.H.
Sopian K.
Tiong S.K.
Amin N.
spellingShingle Ferdaous M.T.
Shahahmadi S.A.
Chelvanathan P.
Akhtaruzzaman M.
Alharbi F.H.
Sopian K.
Tiong S.K.
Amin N.
Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis
author_sort Ferdaous M.T.
title Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis
title_short Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis
title_full Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis
title_fullStr Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis
title_full_unstemmed Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis
title_sort elucidating the role of interfacial mos2 layer in cu2znsns4 thin film solar cells by numerical analysis
publisher Elsevier Ltd
publishDate 2023
_version_ 1806428007327334400