Process Parameters Optimization of 14nm MOSFET Using 2-D Analytical Modelling
This paper presents the modeling and optimization of 14nm gate length CMOS transistor which is down-scaled from previous 32nm gate length. High-k metal gate material was used in this research utilizing Hafnium Dioxide (HfO2) as dielectric and Tungsten Silicide (WSi2) and Titanium Silicide (TiSi2) as...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | |
Published: |
2017
|
Online Access: | http://dspace.uniten.edu.my/jspui/handle/123456789/5972 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Tenaga Nasional |
id |
my.uniten.dspace-5972 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-59722017-12-08T07:48:05Z Process Parameters Optimization of 14nm MOSFET Using 2-D Analytical Modelling Noor Faizah, Z.A. Ahmad, I. Ker, P.J. Siti Munirah, Y. Mohd Firdaus, R. Md Fazle, E. Menon, P.S. This paper presents the modeling and optimization of 14nm gate length CMOS transistor which is down-scaled from previous 32nm gate length. High-k metal gate material was used in this research utilizing Hafnium Dioxide (HfO2) as dielectric and Tungsten Silicide (WSi2) and Titanium Silicide (TiSi2) as a metal gate for NMOS and PMOS respectively. The devices are fabricated virtually using ATHENA module and characterized its performance evaluation via ATLAS module; both in Virtual Wafer Fabrication (VWF) of Silvaco TCAD Tools. The devices were then optimized through a process parameters variability using L9 Taguchi Method. There were four process parameter with two noise factor of different values were used to analyze the factor effect. The results show that the optimal value for both transistors are well within ITRS 2013 prediction where VTH and IOFF are 0.236737V and 6.995705nA/um for NMOS device and 0.248635 V and 5.26nA/um for PMOS device respectively. © 2016 The Authors, published by EDP Sciences. 2017-12-08T07:48:05Z 2017-12-08T07:48:05Z 2016 http://dspace.uniten.edu.my/jspui/handle/123456789/5972 |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
description |
This paper presents the modeling and optimization of 14nm gate length CMOS transistor which is down-scaled from previous 32nm gate length. High-k metal gate material was used in this research utilizing Hafnium Dioxide (HfO2) as dielectric and Tungsten Silicide (WSi2) and Titanium Silicide (TiSi2) as a metal gate for NMOS and PMOS respectively. The devices are fabricated virtually using ATHENA module and characterized its performance evaluation via ATLAS module; both in Virtual Wafer Fabrication (VWF) of Silvaco TCAD Tools. The devices were then optimized through a process parameters variability using L9 Taguchi Method. There were four process parameter with two noise factor of different values were used to analyze the factor effect. The results show that the optimal value for both transistors are well within ITRS 2013 prediction where VTH and IOFF are 0.236737V and 6.995705nA/um for NMOS device and 0.248635 V and 5.26nA/um for PMOS device respectively. © 2016 The Authors, published by EDP Sciences. |
format |
|
author |
Noor Faizah, Z.A. Ahmad, I. Ker, P.J. Siti Munirah, Y. Mohd Firdaus, R. Md Fazle, E. Menon, P.S. |
spellingShingle |
Noor Faizah, Z.A. Ahmad, I. Ker, P.J. Siti Munirah, Y. Mohd Firdaus, R. Md Fazle, E. Menon, P.S. Process Parameters Optimization of 14nm MOSFET Using 2-D Analytical Modelling |
author_facet |
Noor Faizah, Z.A. Ahmad, I. Ker, P.J. Siti Munirah, Y. Mohd Firdaus, R. Md Fazle, E. Menon, P.S. |
author_sort |
Noor Faizah, Z.A. |
title |
Process Parameters Optimization of 14nm MOSFET Using 2-D Analytical Modelling |
title_short |
Process Parameters Optimization of 14nm MOSFET Using 2-D Analytical Modelling |
title_full |
Process Parameters Optimization of 14nm MOSFET Using 2-D Analytical Modelling |
title_fullStr |
Process Parameters Optimization of 14nm MOSFET Using 2-D Analytical Modelling |
title_full_unstemmed |
Process Parameters Optimization of 14nm MOSFET Using 2-D Analytical Modelling |
title_sort |
process parameters optimization of 14nm mosfet using 2-d analytical modelling |
publishDate |
2017 |
url |
http://dspace.uniten.edu.my/jspui/handle/123456789/5972 |
_version_ |
1644493812628717568 |