Enhancing the physicochemical and functional properties of gelatin/ graphene oxide/cinnamon bark oil nanocomposite packaging films using ferulic acid
Protein such as fish gelatin (FG) is widely used as a raw material to develop biodegradable packaging. However, its mechanical and water vapour barrier properties are still inferior as compared to synthetic polymers. Thus, in this research, a reinforcing nanofiller which is graphene oxide (GO, 2% w/...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2022
|
Online Access: | http://psasir.upm.edu.my/id/eprint/101276/ https://www.sciencedirect.com/science/article/pii/S2214289422001521 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Putra Malaysia |
Summary: | Protein such as fish gelatin (FG) is widely used as a raw material to develop biodegradable packaging. However, its mechanical and water vapour barrier properties are still inferior as compared to synthetic polymers. Thus, in this research, a reinforcing nanofiller which is graphene oxide (GO, 2% w/w based on FG) and a crosslinking process using ferulic acid (FA) were incorporated to produce gelatin-graphene oxide/ferulic acid (gel-GO/FA) films with enhanced properties. Different concentrations of FA (0%, 0.5%, 1.0%, 2.0%, 3.0%, and 4.0% w/w) were used and the resulting films were analyzed. Cinnamon bark oil (CEO, 5% w/w based on FG) was incorporated to enhance the antioxidant activities of the films. The incorporation of FA resulted in a denser film microstructure and increased tortuosity, as shown by scanning electron microscopy (SEM) as well as the decreased (p < 0.05) water vapour permeability of the films. The antioxidant activities of the films improved significantly (p < 0.05) with FA concentration, with the highest values of DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity, ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid) scavenging activity, and total phenolic content of 97.41%, 98.67%, and 79.50 mg GAE/ g, respectively. In this study, the optimal concentration of the FA is 1% as the films showed the highest (p < 0.05) Young’s modulus and tensile strength. In addition, 1% FA was sufficient to result in a significant (p < 0.05) decrease of the ultraviolet (UV) light transmittance (wavelength= 200. 280, and 400 nm) and opacity. This research reveals that crosslinking gel-GO films with FA can improve the mechanical, water vapour and light barrier, thermal stability, as well as functional properties, potentially broadening their applications as food packaging. |
---|