Gate leakage logic detection for analog CMOS circuit
In micron technology node, Igate is not a big issue to circuit designer due to its negligible value. But in deep submicron technology node, Igate is one of the major and dominant leakage components. Igate is also reacts to process variation. As this issue arise, circuit designer need to aware the im...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Book Section |
Language: | English |
Published: |
Penerbit UTM
2008
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/31033/1/AbuKhariA%27ain2008_GateLeakageLogicDetectionforAnalog.pdf http://eprints.utm.my/id/eprint/31033/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
id |
my.utm.31033 |
---|---|
record_format |
eprints |
spelling |
my.utm.310332017-08-03T00:36:52Z http://eprints.utm.my/id/eprint/31033/ Gate leakage logic detection for analog CMOS circuit Kamisian, Izam Ibrahim, Muhamad Faisal A'ain, Abu Khari Lee, Yuen Tat Tan, Terrence Huat Hin TK Electrical engineering. Electronics Nuclear engineering In micron technology node, Igate is not a big issue to circuit designer due to its negligible value. But in deep submicron technology node, Igate is one of the major and dominant leakage components. Igate is also reacts to process variation. As this issue arise, circuit designer need to aware the impact of Igate towards their design. In addition the ability to observe the Igate level is more desirable. The variation in Igate is most sensitive to oxide thickness, TOX, due to their exponential relationship (Mukhopadhyay and Roy, 2003). It will rise by the factor of 4,000 from 90 nm to 50 nm node (Helms, Schmidt and Nebel, 2004). TOX tends to vary from one process corner to another, resulted in the variation in Igate. In digital circuit, Igate will contribute to increase off state power consumption. In contrast, for analog circuit, simple current mirror with large ratio will suffer on unexpected output current due to the leakage path from gate to ground. Penerbit UTM 2008 Book Section PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/31033/1/AbuKhariA%27ain2008_GateLeakageLogicDetectionforAnalog.pdf Kamisian, Izam and Ibrahim, Muhamad Faisal and A'ain, Abu Khari and Lee, Yuen Tat and Tan, Terrence Huat Hin (2008) Gate leakage logic detection for analog CMOS circuit. In: Advances In Microelectronics. Penerbit UTM, Skudai, Johor Bahru, pp. 38-57. ISBN 978-983-52-0654-2 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Kamisian, Izam Ibrahim, Muhamad Faisal A'ain, Abu Khari Lee, Yuen Tat Tan, Terrence Huat Hin Gate leakage logic detection for analog CMOS circuit |
description |
In micron technology node, Igate is not a big issue to circuit designer due to its negligible value. But in deep submicron technology node, Igate is one of the major and dominant leakage components. Igate is also reacts to process variation. As this issue arise, circuit designer need to aware the impact of Igate towards their design. In addition the ability to observe the Igate level is more desirable. The variation in Igate is most sensitive to oxide thickness, TOX, due to their exponential relationship (Mukhopadhyay and Roy, 2003). It will rise by the factor of 4,000 from 90 nm to 50 nm node (Helms, Schmidt and Nebel, 2004). TOX tends to vary from one process corner to another, resulted in the variation in Igate. In digital circuit, Igate will contribute to increase off state power consumption. In contrast, for analog circuit, simple current mirror with large ratio will suffer on unexpected output current due to the leakage path from gate to ground. |
format |
Book Section |
author |
Kamisian, Izam Ibrahim, Muhamad Faisal A'ain, Abu Khari Lee, Yuen Tat Tan, Terrence Huat Hin |
author_facet |
Kamisian, Izam Ibrahim, Muhamad Faisal A'ain, Abu Khari Lee, Yuen Tat Tan, Terrence Huat Hin |
author_sort |
Kamisian, Izam |
title |
Gate leakage logic detection for analog CMOS circuit |
title_short |
Gate leakage logic detection for analog CMOS circuit |
title_full |
Gate leakage logic detection for analog CMOS circuit |
title_fullStr |
Gate leakage logic detection for analog CMOS circuit |
title_full_unstemmed |
Gate leakage logic detection for analog CMOS circuit |
title_sort |
gate leakage logic detection for analog cmos circuit |
publisher |
Penerbit UTM |
publishDate |
2008 |
url |
http://eprints.utm.my/id/eprint/31033/1/AbuKhariA%27ain2008_GateLeakageLogicDetectionforAnalog.pdf http://eprints.utm.my/id/eprint/31033/ |
_version_ |
1643648651404247040 |